
One-Variable Calculus, with an Introduction to

Linear Algebra

Tom M. Apostol



Contents

R Reference 2
R.1 ¶ Characteristic Function . . . . . . . . . . . . . . . . . . . . . . 2
R.2 ¶ Completeness Axiom . . . . . . . . . . . . . . . . . . . . . . . 2
R.3 ¶ Infimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
R.4 ¶ Integrable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
R.5 ¶ Integral of a Bounded Function . . . . . . . . . . . . . . . . . 3
R.6 ¶ Integral of a Step Function . . . . . . . . . . . . . . . . . . . . 3
R.7 ¶ Lower Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
R.8 ¶ Monotonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
R.9 ¶ Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
R.10 ¶ Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
R.11 ¶ Step Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
R.12 ¶ Supremum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
R.13 ¶ Upper Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 A Set of Axioms for the Real-Number System 6
1.1 ¥ Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 ¥ Existence of a Greatest Lower Bound . . . . . . . . . . . . . . 6
1.3 ¥ Positive Integers Unbounded Above . . . . . . . . . . . . . . . 7
1.4 ¥ Archimedean Property of the Reals . . . . . . . . . . . . . . . 7
1.5 ¥ Theorem I.31 . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 ¥ Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 ¥ Theorem I.32 . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7.1 ¥ Theorem I.32a . . . . . . . . . . . . . . . . . . . . . . . 8
1.7.2 ¥ Theorem I.32b . . . . . . . . . . . . . . . . . . . . . . . 9

1.8 ¥ Additive Property of Supremums and Infimums . . . . . . . . 9
1.8.1 ¥ Theorem I.33a . . . . . . . . . . . . . . . . . . . . . . . 9
1.8.2 ¥ Theorem I.33b . . . . . . . . . . . . . . . . . . . . . . . 10

1.9 ¥ Theorem I.34 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 The Concepts of Integral Calculus 12
2.1 The Concept of Area as a Set Function . . . . . . . . . . . . . . . 12

2.1.1 ¶ Nonnegative Property . . . . . . . . . . . . . . . . . . . 12
2.1.2 ¶ Additive Property . . . . . . . . . . . . . . . . . . . . . 12

1



2.1.3 ¶ Difference Property . . . . . . . . . . . . . . . . . . . . 12
2.1.4 ¶ Invariance Under Congruence . . . . . . . . . . . . . . 12
2.1.5 ¶ Choice of Scale . . . . . . . . . . . . . . . . . . . . . . 13
2.1.6 x Exhaustion Property . . . . . . . . . . . . . . . . . . . 13

2.2 Exercises 1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 x Exercise 1.7.1 . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 x Exercise 1.7.2 . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 x Exercise 1.7.3 . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 x Exercise 1.7.4 . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.5 x Exercise 1.7.5 . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.6 x Exercise 1.7.6 . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Exercises 1.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 ¥ Exercise 1.11.4 . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 x Hermite’s Identity . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 x Exercise 1.11.6 . . . . . . . . . . . . . . . . . . . . . . 26
2.3.4 x Exercise 1.11.7 . . . . . . . . . . . . . . . . . . . . . . 26
2.3.5 x Exercise 1.11.8 . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Properties of the Integral of a Step Function . . . . . . . . . . . . 30
2.4.1 x Additive Property . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 x Homogeneous Property . . . . . . . . . . . . . . . . . . 31
2.4.3 x Linearity Property . . . . . . . . . . . . . . . . . . . . 31
2.4.4 x Comparison Theorem . . . . . . . . . . . . . . . . . . . 32
2.4.5 x Additivity With Respect to the Interval of Integration 32
2.4.6 x Invariance Under Translation . . . . . . . . . . . . . . 33
2.4.7 x Expansion or Contraction of the Interval of Integration 34
2.4.8 x Reflection Property . . . . . . . . . . . . . . . . . . . . 35

2.5 Exercises 1.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.1 x Exercise 1.15.1 . . . . . . . . . . . . . . . . . . . . . . 36
2.5.2 x Exercise 1.15.3 . . . . . . . . . . . . . . . . . . . . . . 37
2.5.3 x Exercise 1.15.5 . . . . . . . . . . . . . . . . . . . . . . 38
2.5.4 x Exercise 1.15.7 . . . . . . . . . . . . . . . . . . . . . . 39
2.5.5 x Exercise 1.15.9 . . . . . . . . . . . . . . . . . . . . . . 41
2.5.6 x Exercise 1.15.11 . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Upper and Lower Integrals . . . . . . . . . . . . . . . . . . . . . . 46
2.6.1 x Theorem 1.9 . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 The Area of an Ordinate Set Expressed as an Integral . . . . . . 47
2.7.1 x Theorem 1.10 . . . . . . . . . . . . . . . . . . . . . . . 47
2.7.2 x Theorem 1.11 . . . . . . . . . . . . . . . . . . . . . . . 47

2.8 Integrability of Bounded Monotonic Functions . . . . . . . . . . . 48
2.8.1 x Theorem 1.12 . . . . . . . . . . . . . . . . . . . . . . . 48
2.8.2 x Theorem 1.13 . . . . . . . . . . . . . . . . . . . . . . . 50
2.8.3 x Theorem 1.14 . . . . . . . . . . . . . . . . . . . . . . . 52
2.8.4 - Integral of

şb

0
xp dx when p is a Positive Integer . . . . 53

2



Chapter R

Reference

R.1 ¶ Characteristic Function

Let S be a set of points on the real line. The characteristic function of S is
the function XS such that XSpxq “ 1 for every x in S, and XSpxq “ 0 for those
x not in S.

Ñ - Set.characteristic

R.2 ¶ Completeness Axiom

Every nonempty set S of real numbers which is bounded above has a supremum;
that is, there is a real number B such that B “ supS.

k
- Real.exists isLUB

R.3 ¶ Infimum

A number B is called an infimum of a nonempty set S if B has the following
two properties:

(a) B is a lower bound for S.

(b) No number greater than B is a lower bound for S.

Such a number B is also known as the greatest lower bound.

k
- IsGLB

R.4 ¶ Integrable

Let f be a function defined and bounded on ra, bs. f is said to be integrable
if there exists one and only one number I such that (2) holds. If f is integrable
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on ra, bs, we say that the integral
şb

a
fpxq dx exists.

R.5 ¶ Integral of a Bounded Function

Let f be a function defined and bounded on ra, bs. Let s and t denote arbitrary
step functions defined on ra, bs such that

spxq ď fpxq ď tpxq (1)

for every x in ra, bs. If there is one and only one number I such that
ż b

a

spxq dx ď I ď

ż b

a

tpxq dx (2)

for every pair of step functions s and t satisfying (1), then this number I is

called the integral of f from a to b, and is denoted by the symbol
şb

a
fpxq dx

or by
şb

a
f .

If a ă b, we define
şa

b
fpxq dx “ ´

şb

a
fpxq dx, provided f is ¶ Integrable on

ra, bs. We also define
şa

a
fpxq dx “ 0.

The function f is called the integrand, the numbers a and b are called the
limits of integration, and the interval ra, bs the interval of integration.

R.6 ¶ Integral of a Step Function

Let s be a ¶ Step Function defined on ra, bs, and let P “ tx0, x1, . . . , xnu be
a ¶ Partition of ra, bs such that s is constant on the open subintervals of P .
Denote by sk the constant value that s takes in the kth open subinterval of P ,
so that

spxq “ sk if xk´1 ă x ă xk, k “ 1, 2, . . . , n.

The integral of s from a to b, denoted by the symbol
şb

a
spxq dx, is defined

by the following formula:
ż b

a

spxq dx “

n
ÿ

k“1

sk ¨ pxk ´ xk´1q.

If a ă b, we define
şa

b
spxq dx “ ´

şb

a
spxq dx. We also define

şa

a
spxq dx “ 0.

R.7 ¶ Lower Integral

Let f be a function bounded on ra, bs and S denote the set of numbers
şb

a
spxq dx

obtained as s runs through all ¶ Step Functions below f . That is, let

S “

#

ż b

a

spxq dx : s ď f

+

.

The number supS is called the lower integral of f . It is denoted as I
¯

pfq.
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R.8 ¶ Monotonic

A function f is called monotonic on set S if it is increasing on S or if it is
decreasing on S. f is said to be strictly monotonic if it is strictly increasing
on S or strictly decreasing on S.

A function f is said to be piecewise monotonic on an interval if its graph
consists of a finite number of monotonic pieces. In other words, f is piecewise
monotonic on ra, bs if there is a ¶ Partition of ra, bs such that f is monotonic
on each of the open subintervals of P .

R.9 ¶ Partition

Let ra, bs be a closed interval decomposed into n subintervals by inserting n´ 1
points of subdivision, say x1, x2, . . ., xn´1, subject only to the restriction

a ă x1 ă x2 ă ¨ ¨ ¨ ă xn´1 ă b. (3)

It is convenient to denote the point a itself by x0 and the point b by xn. A
collection of points satisfying (3) is called a partition P of ra, bs, and we use
the symbol

P “ tx0, x1, . . . , xnu

to designate this partition.

Ñ - Set.Partition

R.10 ¶ Refinement

Let P be a ¶ Partition of closed interval ra, bs. A refinement P 1 of P is a
partition formed by adjoining more subdivision points to those already in P .

P 1 is said to be finer than P . The union of two partitions P1 and P2 is
called the common refinement of P1 and P2.

R.11 ¶ Step Function

A function s, whose domain is a closed interval ra, bs, is called a step function
if there is a ¶ Partition P “ tx0, x1, . . . , xnu of ra, bs such that s is constant on
each open subinterval of P . That is to say, for each k “ 1, 2, . . . , n, there is a
real number sk such that

spxq “ sk if xk´1 ă x ă xk.

Step functions are sometimes called piecewise constant functions.

5
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Note

At each of the endpoints xk´1 and xk the function must have some well-
defined value, but this need not be the same as sk.

Ñ - Geometry.StepFunction

R.12 ¶ Supremum

A number B is called a supremum of a nonempty set S if B has the following
two properties:

(a) B is an upper bound for S.

(b) No number less than B is an upper bound for S.

Such a number B is also known as the least upper bound.

k
- IsLUB

R.13 ¶ Upper Integral

Let f be a function bounded on ra, bs and T denote the set of numbers
şb

a
tpxq dx

obtained as t runs through all ¶ Step Functions above f . That is, let

T “

#

ż b

a

tpxq dx : f ď t

+

.

The number inf T is called the upper integral of f . It is denoted as Īpfq.

6
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Chapter 1

A Set of Axioms for the
Real-Number System

1.1 ¥ Lemma 1

Lemma 1. Nonempty set S has supremum L if and only if set ´S has infimum
´L.

Ñ - Apostol.Chapter I 03.is lub neg set iff is glb set neg

Proof. Suppose L “ supS and fix x P S. By definition of the ¶ Supremum,
x ď L and L is the smallest value satisfying this inequality. Negating both sides
of the inequality yields ´x ě ´L. Furthermore, ´L must be the largest value
satisfying this inequality. Therefore ´L “ inf ´S. ˝

1.2 ¥ Existence of a Greatest Lower Bound

Theorem I.27. Every nonempty set S that is bounded below has a greatest
lower bound; that is, there is a real number L such that L “ inf S.

Ñ - Apostol.Chapter I 03.exists isGLB

Proof. Let S be a nonempty set bounded below by x. Then ´S is nonempty
and bounded above by x. By the ¶ Completeness Axiom, there exists a ¶

Supremum L of ´S. By ¥ Lemma 1, L is a supremum of ´S if and only if ´L
is an infimum of S. ˝
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1.3 ¥ Positive Integers Unbounded Above

Theorem I.29. For every real x there exists a positive integer n such that
n ą x.

Ñ - Apostol.Chapter I 03.exists pnat geq self

Proof. Let n “ |rxs| ` 1. It is trivial to see n is a positive integer satisfying
n ě 1. Thus all that remains to be shown is that n ą x. If x is nonpositive,
n ą x immediately follows from n ě 1. If x is positive,

x “ |x| ď |rxs| ă |rxs| ` 1 “ n.

˝

1.4 ¥ Archimedean Property of the Reals

Theorem I.30. If x ą 0 and if y is an arbitrary real number, there exists a
positive integer n such that nx ą y.

Ñ - Apostol.Chapter I 03.exists pnat mul self geq of pos

Proof. Let x ą 0 and y be an arbitrary real number. By ¥ Positive Inte-
gers Unbounded Above, there exists a positive integer n such that n ą y{x.
Multiplying both sides of the inequality yields nx ą y as expected. ˝

1.5 ¥ Theorem I.31

Theorem I.31. If three real numbers a, x, and y satisfy the inequalities

a ď x ď a `
y

n

for every integer n ě 1, then x “ a.

Ñ - Apostol.Chapter I 03.forall pnat leq self leq frac imp eq

Proof. By the trichotomy of the reals, there are three cases to consider:

Case 1 Suppose x “ a. Then we are immediately finished.

Case 2 Suppose x ă a. But by hypothesis, a ď x. Thus a ă a, a contradic-
tion.
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Case 3 Suppose x ą a. Then there exists some c ą 0 such that a` c “ x. By
¥ Archimedean Property of the Reals, there exists an integer n ą 0 such that
nc ą y. Rearranging terms, we see y{n ă c. Therefore a ` y{n ă a ` c “ x.
But by hypothesis, x ď a ` y{n. Thus a ` y{n ă a ` y{n, a contradiction.

Conclusion Since these cases are exhaustive and both case 2 and 3 lead to
contradictions, x “ a is the only possibility.

˝

1.6 ¥ Lemma 2

Lemma 2. If three real numbers a, x, and y satisfy the inequalities

a ´ y{n ď x ď a

for every integer n ě 1, then x “ a.

Ñ - Apostol.Chapter I 03.forall pnat frac leq self leq imp eq

Proof. By the trichotomy of the reals, there are three cases to consider:

Case 1 Suppose x “ a. Then we are immediately finished.

Case 2 Suppose x ă a. Then there exists some c ą 0 such that x “ a´ c. By
¥ Archimedean Property of the Reals, there exists an integer n ą 0 such that
nc ą y. Rearranging terms, we see that y{n ă c. Therefore a´y{n ą a´c “ x.
But by hypothesis, x ě a ´ y{n. Thus a ´ y{n ă a ´ y{n, a contradiction.

Case 3 Suppose x ą a. But by hypothesis x ď a. Thus a ă a, a contradiction.

Conclusion Since these cases are exhaustive and both case 2 and 3 lead to
contradictions, x “ a is the only possibility.

˝

1.7 ¥ Theorem I.32

Let h be a given positive number and let S be a set of real numbers.

1.7.1 ¥ Theorem I.32a

Theorem I.32a. If S has a supremum, then for some x in S we have x ą

supS ´ h.

Ñ - Apostol.Chapter I 03.sup imp exists gt sup sub delta
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Proof. By definition of a¶ Supremum, supS is the least upper bound of S. For
the sake of contradiction, suppose for all x P S, x ď supS´h. This immediately
implies supS ´ h is an upper bound of S. But supS ´ h ă supS, contradicting
supS being the least upper bound. Therefore our original hypothesis was wrong.
That is, there exists some x P S such that x ą supS ´ h. ˝

1.7.2 ¥ Theorem I.32b

Theorem I.32b. If S has an infimum, then for some x in S we have x ă

inf S ` h.

Ñ - Apostol.Chapter I 03.inf imp exists lt inf add delta

Proof. By definition of an ¶ Infimum, inf S is the greatest lower bound of
S. For the sake of contradiction, suppose for all x P S, x ě inf S ` h. This
immediately implies inf S ` h is a lower bound of S. But inf S ` h ą inf S,
contradicting inf S being the greatest lower bound. Therefore our original hy-
pothesis was wrong. That is, there exists some x P S such that x ă inf S ` h.
˝

1.8 ¥ Additive Property of Supremums and In-
fimums

Given nonempty subsets A and B of R, let C denote the set

C “ ta ` b : a P A, b P Bu.

Note

This is known as the ”Additive Property.”

1.8.1 ¥ Theorem I.33a

Theorem I.33a. If each of A and B has a supremum, then C has a supremum,
and

supC “ supA ` supB.

Ñ - Apostol.Chapter I 03.sup minkowski sum eq sup add sup

Proof. We prove (i) supA`supB is an upper bound of C and (ii) supA`supB
is the least upper bound of C.
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(i) Let x P C. By definition of C, there exist elements a1 P A and b1 P B
such that x “ a1 ` b1. By definition of a ¶ Supremum, a1 ď supA. Likewise,
b1 ď supB. Therefore a1 ` b1 ď supA ` supB. Since x “ a1 ` b1 was arbitrarily
chosen, it follows supA ` supB is an upper bound of C.

(ii) Since A and B have supremums, C is nonempty. By (i), C is bounded
above. Therefore the completeness axiom tells us C has a supremum. Let n ą 0
be an integer. We now prove that

supC ď supA ` supB ď supC ` 1{n. (1.1)

Left-Hand Side First consider the left-hand side of (1.1). By (i), supA`

supB is an upper bound of C. Since supC is the least upper bound of C, it
follows supC ď supA ` supB.

Right-Hand Side Next consider the right-hand side of (1.1). By ¥ The-
orem I.32a, there exists some a1 P A such that supA ă a1 ` 1{p2nq. Likewise,
there exists some b1 P B such that supB ă b1 ` 1{p2nq. Adding these two
inequalities together shows

supA ` supB ă a1 ` b1 ` 1{n

ď supC ` 1{n.

Conclusion Applying ¥ Theorem I.31 to (1.1) proves supC “ supA `

supB as expected.
˝

1.8.2 ¥ Theorem I.33b

Theorem I.33b. If each of A and B has an infimum, then C has an infimum,
and

inf C “ inf A ` inf B.

Ñ - Apostol.Chapter I 03.inf minkowski sum eq inf add inf

Proof. We prove (i) inf A ` inf B is a lower bound of C and (ii) inf A ` inf B
is the greatest lower bound of C.

(i) Let x P C. By definition of C, there exist elements a1 P A and b1 P B such
that x “ a1 `b1. By definition of an ¶ Infimum, a1 ě inf A. Likewise, b1 ě inf B.
Therefore a1 ` b1 ě inf A ` inf B. Since x “ a1 ` b1 was arbitrarily chosen, it
follows inf A ` inf B is a lower bound of C.
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(ii) Since A and B have infimums, C is nonempty. By (i), C is bounded below.
Therefore ¥ Existence of a Greatest Lower Bound tells us C has an infimum.
Let n ą 0 be an integer. We now prove that

inf C ´ 1{n ď inf A ` inf B ď inf C. (1.2)

Right-Hand Side First consider the right-hand side of (1.2). By (i),
inf A ` inf B is a lower bound of C. Since inf C is the greatest upper bound of
C, it follows inf C ě inf A ` inf B.

Left-Hand Side Next consider the left-hand side of (1.2). By ¥ Theorem
I.32b, there exists some a1 P A such that inf A ą a1 ´ 1{p2nq. Likewise, there
exists some b1 P B such that inf B ą b1 ´ 1{p2nq. Adding these two inequalities
together shows

inf A ` inf B ą a1 ` b1 ´ 1{n

ě inf C ´ 1{n.

Conclusion Applying ¥ Lemma 2 to (1.2) proves inf C “ inf A ` inf B
as expected.

˝

1.9 ¥ Theorem I.34

Theorem I.34. Given two nonempty subsets S and T of R such that

s ď t

for every s in S and every t in T . Then S has a supremum, and T has an
infimum, and they satisfy the inequality

supS ď inf T.

Ñ - Apostol.Chapter I 03.forall mem le forall mem imp sup le inf

Proof. By hypothesis, S and T are nonempty sets. Let s P S and t P T . Then
t is an upper bound of S and s is a lower bound of T . By the completeness
axiom, S has a supremum. By ¥ Existence of a Greatest Lower Bound, T has
an infimum. All that remains is showing supS ď inf T .

For the sake of contradiction, suppose supS ą inf T . Then there exists some
c ą 0 such that supS “ inf T `c. Therefore inf T ă supS´c{2. By ¥ Theorem
I.32a, there exists some x P S such that supS ´ c{2 ă x. Thus

inf T ă supS ´ c{2 ă x.

But by hypothesis, x P S is a lower bound of T meaning x ď inf T . Therefore
x ă x, a contradiction. Out original assumption is incorrect; that is, supS ď

inf T . ˝
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Chapter 2

The Concepts of Integral
Calculus

2.1 The Concept of Area as a Set Function

We assume there exists a class M of measurable sets in the plane and a set
function a, whose domain is M , with the following properties:

2.1.1 ¶ Nonnegative Property

For each set S in M , we have apSq ě 0.

Ñ - Nonnegative Property

2.1.2 ¶ Additive Property

If S and T are in M , then S YT and S XT are in M , and we have apS YT q “

apSq ` apT q ´ apS X T q.

Ñ - Additive Property

2.1.3 ¶ Difference Property

If S and T are in M with S Ď T , then T ´S is in M , and we have apT ´Sq “

apT q ´ apSq.

Ñ - Difference Property

2.1.4 ¶ Invariance Under Congruence

If a set S is in M and if T is congruent to S, then T is also in M and we have
apSq “ apT q.
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Ñ - Invariance Under Congruence

2.1.5 ¶ Choice of Scale

Every rectangle R is in M . If the edges of R have lengths h and k, then
apRq “ hk.

Ñ - Choice of Scale

2.1.6 x Exhaustion Property

Let Q be a set that can be enclosed between two step regions S and T , so that

S Ď Q Ď T. (2.1)

If there is one and only one number c which satisfies the inequalities

apSq ď c ď apT q

for all step regions S and T satisfying (2.1), then Q is measurable and apQq “ c.

Ñ - Exhaustion Property

2.2 Exercises 1.7

2.2.1 x Exercise 1.7.1

Prove that each of the following sets is measurable and has zero area:

x Exercise 1.7.1a

A set consisting of a single point.

Proof. Let S be a set consisting of a single point. By definition of a point, S is
a rectangle in which all vertices coincide. By ¶ Choice of Scale, S is measurable
with area its width times its height. The width and height of S is trivially zero.
Therefore apSq “ p0qp0q “ 0. ˝

x Exercise 1.7.1b

A set consisting of a finite number of points in a plane.

Proof. Define predicate P pnq as ”A set consisting of n points in a plane is
measurable with area 0”. We use induction to prove P pnq holds for all n ą 0.
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Base Case Consider a set S consisting of a single point in a plane. By x

Exercise 1.7.1a, S is measurable with area 0. Thus P p1q holds.

Induction Step Assume induction hypothesis P pkq holds for some k ą 0. Let
Sk`1 be a set consisting of k ` 1 points in a plane. Pick an arbitrary point of
Sk`1. Denote the set containing just this point as T . Denote the remaining set
of points as Sk. By construction, Sk`1 “ Sk Y T . By the induction hypothesis,
Sk is measurable with area 0. By x Exercise 1.7.1a, T is measurable with area
0. By the ¶ Additive Property, Sk Y T is measurable, Sk X T is measurable,
and

apSk`1q “ apSk Y T q

“ apSkq ` apT q ´ apSk X T q

“ 0 ` 0 ´ apSk X T q. (2.2)

There are two cases to consider:

Case 1 Sk X T “ ∅. Then it trivially follows that apSk X T q “ 0.

Case 2 Sk X T ‰ ∅. Since T consists of a single point, Sk X T “ T . By
x Exercise 1.7.1a, apSk X T q “ apT q “ 0.

In both cases, (2.2) evaluates to 0, implying P pk ` 1q as expected.

Conclusion By mathematical induction, it follows for all n ą 0, P pnq is true.
˝

x Exercise 1.7.1c

The union of a finite collection of line segments in a plane.

Proof. Define predicate P pnq as ”A set consisting of n line segments in a plane
is measurable with area 0”. We use induction to prove P pnq holds for all n ą 0.

Base Case Consider a set S consisting of a single line segment in a plane. By
definition of a line segment, S is a rectangle in which one side has dimension 0.
By ¶ Choice of Scale, S is measurable with area its width w times its height h.
Therefore apSq “ wh “ 0. Thus P p1q holds.

Induction Step Assume induction hypothesis P pkq holds for some k ą 0. Let
Sk`1 be a set consisting of k`1 line segments in a plane. Pick an arbitrary line
segment of Sk`1. Denote the set containing just this line segment as T . Denote
the remaining set of line segments as Sk. By construction, Sk`1 “ Sk Y T . By
the induction hypothesis, Sk is measurable with area 0. By the base case, T is

15



measurable with area 0. By the ¶ Additive Property, Sk Y T is measurable,
Sk X T is measurable, and

apSk`1q “ apSk Y T q

“ apSkq ` apT q ´ apSk X T q

“ 0 ` 0 ´ apSk X T q. (2.3)

There are two cases to consider:

Case 1 Sk X T “ ∅. Then it trivially follows that apSk X T q “ 0.

Case 2 Sk X T ‰ ∅. Since T consists of a single point, Sk X T “ T . By
the base case, apSk X T q “ apT q “ 0.

In both cases, (2.3) evaluates to 0, implying P pk ` 1q as expected.

Conclusion By mathematical induction, it follows for all n ą 0, P pnq is true.
˝

2.2.2 x Exercise 1.7.2

Every right triangular region is measurable because it can be obtained as the
intersection of two rectangles. Prove that every triangular region is measurable
and that its area is one half the product of its base and altitude.

Proof. Let T 1 be a triangular region with base of length a, height of length b,
and hypotenuse of length c. Consider the translation and rotation of T 1, say T ,
such that its hypotenuse is entirely within quadrant I and the vertex opposite
the hypotenuse is situated at point p0, 0q.

Let R be a rectangle of width a, height b, and bottom-left corner at p0, 0q.
By construction, R covers all of T . Let S be a rectangle of width c and height
a sin θ, where θ is the acute angle measured from the bottom-right corner of T
relative to the x-axis. As an example, consider the image below of triangle T
with width 4 and height 3:

By ¶ Choice of Scale, both R and S are measurable. By this same axiom,
apRq “ ab and apSq “ ca sin θ. By the ¶ Additive Property, R Y S and R X S
are both measurable. apR X Sq “ apT q and apR Y Sq can be determined by
noting that R’s construction implies identity apRq “ 2apT q. Therefore

apT q “ apR X Sq

“ apRq ` apSq ´ apR Y Sq

“ ab ` ca sin θ ´ apR Y Sq

“ ab ` ca sin θ ´ pca sin θ `
1

2
apRqq

“ ab ` ca sin θ ´ ca sin θ ´ apT q.

16



Solving for apT q gives the desired identity:

apT q “
1

2
ab.

By ¶ Invariance Under Congruence, apT 1q “ apT q, concluding our proof. ˝

2.2.3 x Exercise 1.7.3

Prove that every trapezoid and every parallelogram is measurable and derive
the usual formulas for their areas.

Proof. We begin by proving the formula for a trapezoid. Let S be a trapezoid
with height h and bases b1 and b2, b1 ă b2. There are three cases to consider:

Case 1 Suppose S is a right trapezoid. Then S is the union of non-overlapping
rectangle R of width b1 and height h with right triangle T of base b2 ´ b1 and
height h. By ¶ Choice of Scale, R is measurable. By x Exercise 1.7.2, T is
measurable. By the ¶ Additive Property, RYT and RXT are both measurable

17



and

apSq “ apR Y T q

“ apRq ` apT q ´ apR X T q

“ apRq ` apT q by construction

“ b1h ` apT q Choice of Scale

“ b1h `
1

2
pb2 ´ b1qh x Exercise 1.7.2

“
b1 ` b2

2
h.

Case 2 Suppose S is an acute trapezoid. Then S is the union of non-
overlapping triangle T and right trapezoid R. Let c denote the length of base
T . Then R has longer base edge of length b2 ´ c. By x Exercise 1.7.2, T is
measurable. By Case 1, R is measurable. By the ¶ Additive Property, R Y T
and R X T are both measurable and

apSq “ apT q ` apRq ´ apR X T q

“ apT q ` apRq by construction

“
1

2
ch ` apRq x Exercise 1.7.2

“
1

2
ch `

b1 ` b2 ´ c

2
h Case 1

“
b1 ` b2

2
h.

Case 3 Suppose S is an obtuse trapezoid. Then S is the union of non-
overlapping triangle T and right trapezoid R. Let c denote the length of base
T . Reflect T vertically to form another right triangle, say T 1. Then T 1 Y R is
an acute trapezoid. By ¶ Invariance Under Congruence,

apT 1 Y Rq “ apT Y Rq. (3.1)

By construction, T 1 Y R has height h and bases b1 ´ c and b2 ` c meaning

apT Y Rq “ apT 1 Y Rq (3.1)

“
b1 ´ c ` b2 ` c

2
h Case 2

“
b1 ` b2

2
h.

Conclusion These cases are exhaustive and in agreement with one another.
Thus S is measurable and

apSq “
b1 ` b2

2
h.

18
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Let P be a parallelogram with base b and height h. Then P is the union of
non-overlapping triangle T and right trapezoid R. Let c denote the length of
base T . Reflect T vertically to form another right triangle, say T 1. Then T 1 YR
is an acute trapezoid. By ¶ Invariance Under Congruence,

apT 1 Y Rq “ apT Y Rq. (2.4)

By construction, T 1 Y R has height h and bases b ´ c and b ` c meaning

apT Y Rq “ apT 1 Y Rq (2.4)

“
b ´ c ` b ` c

2
h Area of Trapezoid

“ bh.

˝

2.2.4 x Exercise 1.7.4

Let P be a polygon whose vertices are lattice points. The area of P is I` 1
2B´1,

where I denotes the number of lattice points inside the polygon and B denotes
the number on the boundary.

x Exercise 1.7.4a

Prove that the formula is valid for rectangles with sides parallel to the coordinate
axes.

Proof. Let P be a rectangle with sides parallel to the coordinate axes, with
width w, height h, and lattice points for vertices. We assume P has three
non-collinear points, ruling out any instances of points or line segments.

By ¶ Choice of Scale, P is measurable with area apP q “ wh. By construc-
tion, P has I “ pw ´ 1qph ´ 1q interior lattice points and B “ 2pw ` hq lattice
points on its boundary. The following shows the lattice point area formula is in
agreement with the expected result:

I `
1

2
B ´ 1 “ pw ´ 1qph ´ 1q `

1

2
r2pw ` hqs ´ 1

“ pwh ´ w ´ h ` 1q `
1

2
r2pw ` hqs ´ 1

“ pwh ´ w ´ h ` 1q ` pw ` hq ´ 1

“ wh.

˝

19



x Exercise 1.7.4b

Prove that the formula is valid for right triangles and parallelograms.

Proof. Let P be a right triangle with width w ą 0, height h ą 0, and lattice
points for vertices. Let T be the triangle P translated, rotated, and reflected
such that the its vertices are p0, 0q, p0, wq, and pw, hq. Let IT and BT be the
number of interior and boundary points of T respectively. Let HL denote the
number of lattice points on T ’s hypotenuse.

Let R be the overlapping rectangle of width w and height h, situated with
bottom-left corner at p0, 0q. Let IR and BR be the number of interior and
boundary points of R respectively.

By construction, T shares two sides with R. Therefore

BT “
1

2
BR ´ 1 ` HL. (2.5)

Likewise,

IT “
1

2
pIR ´ pHL ´ 2qq. (2.6)

The following shows the lattice point area formula is in agreement with the
expected result:

IT `
1

2
BT ´ 1 “

1

2
pIR ´ pHL ´ 2qq `

1

2
BT ´ 1 (2.6)

“
1

2
rIR ´ HL ` BT s

“
1

2

„

IR ´ HL `
1

2
BR ´ 1 ` HL

ȷ

(2.5)

“
1

2

„

IR `
1

2
BR ´ 1

ȷ

“
1

2
rwhs x Exercise 1.7.4a.

We do not prove this formula is valid for parallelograms here. Instead, refer
to x Exercise 1.7.4c below. ˝

x Exercise 1.7.4c

Use induction on the number of edges to construct a proof for general polygons.

Proof. Define predicate P pnq as ”An n-polygon with vertices on lattice points
has area I ` 1

2B ´ 1.” We use induction to prove P pnq holds for all n ě 3.

Base Case A 3-polygon is a triangle. By x Exercise 1.7.4b, the lattice point
area formula holds. Thus P p3q holds.
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Induction Step Assume induction hypothesis P pkq holds for some k ě 3.
Let P be a pk ` 1q-polygon with vertices on lattice points. Such a polygon is
equivalent to the union of a k-polygon S with a triangle T . That is, P “ S YT .

Let IP be the number of interior lattice points of P . Let BP be the number
of boundary lattice points of P . Similarly, let IS , IT , BS , and BT be the number
of interior and boundary lattice points of S and T . Let c denote the number of
boundary points shared between S and T .

By our induction hypothesis, apSq “ IS ` 1
2BS ´ 1. By our base case,

apT q “ IT ` 1
2BT ´ 1. By construction, it follows:

IP “ IS ` IT ` c ´ 2

BP “ BS ` BT ´ pc ´ 2q ´ c

“ BS ` BT ´ 2c ` 2.

Applying the lattice point area formula to P yields the following:

IP `
1

2
BP ´ 1

“ pIS ` IT ` c ´ 2q `
1

2
pBS ` BT ´ 2c ` 2q ´ 1

“ IS ` IT ` c ´ 2 `
1

2
BS `

1

2
BT ´ c ` 1 ´ 1

“ pIS `
1

2
BS ´ 1q ` pIT `

1

2
BT ´ 1q

“ apSq ` pIT `
1

2
BT ´ 1q induction hypothesis

“ apSq ` apT q. base case

By the ¶ Additive Property, S Y T is measurable, S X T is measurable, and

apP q “ apS Y T q

“ apSq ` apT q ´ apS X T q

“ apSq ` apT q. by construction

This shows the lattice point area formula is in agreement with our axiomatic
definition of area. Thus P pk ` 1q holds.

Conclusion By mathematical induction, it follows for all n ě 3, P pnq is true.
˝

2.2.5 x Exercise 1.7.5

Prove that a triangle whose vertices are lattice points cannot be equilateral.
[Hint: Assume there is such a triangle and compute its area in two ways,

using Exercises 2 and 4.]
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Proof. Proceed by contradiction. Let T be an equilateral triangle whose ver-
tices are lattice points. Assume each side of T has length a. Then T has height
h “ pa

?
3q{2. By x Exercise 1.7.2,

apT q “
1

2
ah “

a2
?
3

4
. (5.1)

Let I and B denote the number of interior and boundary lattice points of T
respectively. By x Exercise 1.7.4,

apT q “ I `
1

2
B ´ 1. (5.2)

But (5.1) is irrational whereas (5.2) is not. This is a contradiction. Thus, there
is no equilateral triangle whose vertices are lattice points. ˝

2.2.6 x Exercise 1.7.6

Let A “ t1, 2, 3, 4, 5u, and let M denote the class of all subsets of A. (There
are 32 altogether, counting A itself and the empty set ∅.) For each set S in
M , let npSq denote the number of distinct elements in S. If S “ t1, 2, 3, 4u and
T “ t3, 4, 5u, compute npS YT q, npS XT q, npS ´T q, and npT ´Sq. Prove that
the set function n satisfies the first three axioms for area.

Proof. Let S “ t1, 2, 3, 4u and T “ t3, 4, 5u. Then

npS Y T q “ npt1, 2, 3, 4u Y t3, 4, 5uq

“ npt1, 2, 3, 4, 5uq

“ 5.

npS X T q “ npt1, 2, 3, 4u X t3, 4, 5uq

“ npt3, 4uq

“ 2.

npS ´ T q “ npt1, 2, 3, 4u ´ t3, 4, 5uq

“ npt1, 2uq

“ 2.

npT ´ Sq “ npt3, 4, 5u ´ t1, 2, 3, 4uq

“ npt5uq

“ 1.

We now prove n satisfies the first three axioms for area.

Nonnegative Property n returns the length of some member of M . By
hypothesis, the smallest possible input to n is ∅. Since np∅q “ 0, it follows
npSq ě 0 for all S Ă A.
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Additive Property Let S and T be members of M . It trivially follows that
both S Y T and S X T are in M . Consider the value of npS Y T q. There are
two cases to consider:

Case 1 Suppose S X T “ ∅. That is, there is no common element shared
between S and T . Thus

npS Y T q “ npSq ` npT q

“ npSq ` npT q ´ 0

“ npSq ` npT q ´ npS X T q.

Case 2 Suppose S X T ‰ ∅. Then npSq ` npT q counts each element of
S X T twice. Therefore npS Y T q “ npSq ` npT q ´ npS X T q.

Conclusion These cases are exhaustive and in agreement with one an-
other. Thus npS Y T q “ npSq ` npT q ´ npS X T q.

Difference Property Suppose S, T P M such that S Ď T . That is, every
member of S is a member of T . By definition, T ´ S consists of members in T
but not in S. Thus npT ´ Sq “ npT q ´ npSq.

˝

2.3 Exercises 1.11

2.3.1 ¥ Exercise 1.11.4

Prove that the greatest-integer function has the properties indicated:

¥ Exercise 1.11.4a

tx ` nu “ txu ` n for every integer n.

Ñ - Apostol.Chapter 1 11.exercise 4a

Proof. Let x be a real number and n an integer. Letm “ tx ` nu. By definition
of the floor function, m is the unique integer such that m ď x ` n ă m ` 1.
Then m ´ n ď x ă pm ´ nq ` 1. That is, m ´ n “ txu. Rearranging terms we
see that m “ txu ` n as expected. ˝

¥ Exercise 1.11.4b

t´xu “

#

´ txu if x is an integer,

´ txu ´ 1 otherwise.
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Ñ - Apostol.Chapter 1 11.exercise 4b 1

Ñ - Apostol.Chapter 1 11.exercise 4b 2

Proof. There are two cases to consider:

Case 1 Suppose x is an integer. Then x “ txu and ´x “ t´xu. It immediately
follows that

t´xu “ ´x “ ´ txu .

Case 2 Suppose x is not an integer. Let m “ t´xu. By definition of the floor
function, m is the unique integer such that m ď ´x ă m ` 1. Equivalently,
´m ´ 1 ă x ď ´m. Since x is not an integer, it follows ´m ´ 1 ď x ă ´m.
Then, by definition of the floor function, txu “ ´m ´ 1. Solving for m yields

t´xu “ m “ ´ txu ´ 1.

Conclusion The above two cases are exhaustive. Thus

t´xu “

#

´ txu if x is an integer,

´ txu ´ 1 otherwise.

˝

¥ Exercise 1.11.4c

tx ` yu “ txu ` tyu or txu ` tyu ` 1.

Ñ - Apostol.Chapter 1 11.exercise 4c

Proof. Rewrite x and y as the sum of their floor and fractional components:
x “ txu ` txu and y “ tyu ` tyu. Now

tx ` yu “ ttxu ` txu ` tyu ` tyuu

“ ttxu ` tyu ` txu ` tyuu

“ txu ` tyu ` ttxu ` tyuu ¥ Exercise 1.11.4a (2.7)

There are two cases to consider:

Case 1 Suppose txu ` tyu ă 1. Then ttxu ` tyuu “ 0. Substituting this value
into (2.7) yields

tx ` yu “ txu ` tyu .
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Case 2 Suppose txu ` tyu ě 1. Because txu and tyu are both less than 1,
txu ` tyu ă 2. Thus ttxu ` tyuu “ 1. Substituting this value into (2.7) yields

tx ` yu “ txu ` tyu ` 1.

Conclusion Since the above two cases are exhaustive, it follows tx ` yu “

txu ` tyu or txu ` tyu ` 1.
˝

¥ Exercise 1.11.4d

t2xu “ txu `
X

x ` 1
2

\

.

Ñ - Apostol.Chapter 1 11.exercise 4d

Proof. This is immediately proven by applying x Hermite’s Identity. ˝

¥ Exercise 1.11.4e

t3xu “ txu `
X

x ` 1
3

\

`
X

x ` 2
3

\

.

Ñ - Apostol.Chapter 1 11.exercise 4e

Proof. This is immediately proven by applying x Hermite’s Identity. ˝

2.3.2 x Hermite’s Identity

The formulas in Exercises 4(d) and 4(e) suggest a generalization for tnxu. State
and prove such a generalization.

Ñ - Apostol.Chapter 1 11.exercise 5

Proof. We prove that for all natural numbers n and real numbers x, the fol-
lowing identity holds:

tnxu “

n´1
ÿ

i“0

Z

x `
i

n

^

(2.8)

By definition of the floor function, x “ txu ` r for some r P r0, 1q. Define S as
the partition of non-overlapping subintervals

„

0,
1

n

˙

,

„

1

n
,
2

n

˙

, . . . ,

„

n ´ 1

n
, 1

˙

.
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By construction, Y S “ r0, 1q. Therefore there exists some j P N such that

r P

„

j

n
,
j ` 1

n

˙

. (2.9)

With these definitions established, we now show the left- and right-hand sides
of (2.8) evaluate to the same number.

Left-Hand Side Consider the left-hand side of identity (2.8). By (2.9), nr P

rj, j ` 1q. Therefore tnru “ j. Thus

tnxu “ tnptxu ` rqu

“ tn txu ` nru

“ tn txuu ` tnru . ¥ Exercise 1.11.4a

“ tn txuu ` j

“ n txu ` j. (2.10)

Right-Hand Side Now consider the right-hand side of identity (2.8). We
note each summand, by construction, is the floor of x added to a nonnegative
number less than one. Therefore each summand contributes either txu or txu`1
to the total. Letting z denote the number of summands that contribute txu ` 1,
we have

n´1
ÿ

i“0

Z

x `
i

n

^

“ n txu ` z. (2.11)

The value of z corresponds to the number of indices i that satisfy

i

n
ě 1 ´ r.

By (2.9), it follows

1 ´ r P

ˆ

1 ´
j ` 1

n
, 1 ´

j

n

ȷ

“

ˆ

n ´ j ´ 1

n
,
n ´ j

n

ȷ

.

Thus we can determine the value of z by instead counting the number of indices
i that satisfy

i

n
ě

n ´ j

n
.

Rearranging terms, we see that i ě n´ j holds for z “ pn´ 1q ´ pn´ jq ` 1 “ j
of the n summands. Substituting the value of z into (2.11) yields

n´1
ÿ

i“0

Z

x `
i

n

^

“ n txu ` j. (2.12)
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Conclusion Since (2.10) and (2.12) agree with one another, it follows identity
(2.8) holds.

˝

2.3.3 x Exercise 1.11.6

Recall that a lattice point px, yq in the plane is one whose coordinates are
integers. Let f be a nonnegative function whose domain is the interval ra, bs,
where a and b are integers, a ă b. Let S denote the set of points px, yq satisfying
a ď x ď b, 0 ă y ď fpxq. Prove that the number of lattice points in S is equal
to the sum

b
ÿ

n“a

tfpnqu .

Proof. Let i “ a, . . . , b and define Si “ N X p0, fpiqs. By construction, the
number of lattice points in S is

b
ÿ

n“a

|Sn| . (2.13)

All that remains is to show |Si| “ tfpiqu. There are two cases to consider:

Case 1 Suppose fpiq is an integer. Then the number of integers in p0, fpiqs is
fpiq “ tfpiqu.

Case 2 Suppose fpiq is not an integer. Then the number of integers in p0, fpiqs

is the same as that of p0, tfpiqus. Once again, that number is tfpiqu.

Conclusion By cases 1 and 2, |Si| “ tfpiqu. Substituting this identity into
(2.13) finishes the proof.

˝

2.3.4 x Exercise 1.11.7

If a and b are positive integers with no common factor, we have the formula

b´1
ÿ

n“1

Yna

b

]

“
pa ´ 1qpb ´ 1q

2
.

When b “ 1, the sum on the left is understood to be 0.

Note

When b “ 1, the proofs of (a) and (b) are trivial. We continue under the
assumption b ą 1.
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x Exercise 1.11.7a

Derive this result by a geometric argument, counting lattice points in a right
triangle.

Proof. Let f : r1, b ´ 1s Ñ R be given by fpxq “ ax{b. Let S denote the set of
points px, yq satisfying 1 ď x ď b ´ 1, 0 ă y ď fpxq. By x Exercise 1.11.6, the
number of lattice points of S is equal to the sum

b´1
ÿ

n“1

tfpnqu “

b´1
ÿ

n“1

Yna

b

]

. (2.14)

Define T to be the triangle of width w “ b and height h “ fpbq “ a as

T “ tpx, yq : 0 ă x ă b, 0 ă y ď fpxqu.

By construction, T does not introduce any additional lattice points. Thus S
and T have the same number of lattice points. Let HL denote the number of
boundary points on T ’s hypotenuse. We prove that (i) HL “ 2 and (ii) that T

has pa´1qpb´1q

2 lattice points.

(i) Consider the line L overlapping the hypotenuse of T . By construction, T ’s
hypotenuse has endpoints p0, 0q and pb, aq. By hypothesis, a and b are positive,
excluding the possibility of L being vertical. Define the slope of L as

m “
a

b
.

HL coincides with the number of indices i “ 0, . . . , b such that pi, i ˚ mq is a
lattice point. But a and b are coprime by hypothesis and i ď b. Thus i ˚ m is
an integer if and only if i “ 0 or i “ b. Thus HL “ 2.

(ii) Next we count the number of lattice points in T . Let R be the overlapping
retangle of width w and height h, situated with bottom-left corner at p0, 0q. Let
IR denote the number of interior lattice points of R. Let IT and BT denote the
interior and boundary lattice points of T respectively. By Proof.,

IT “
1

2
pIR ´ pHL ´ 2qq

“
1

2
pIR ´ p2 ´ 2qq (i)

“
1

2
IR. (2.15)

Furthermore, since both the adjacent and opposite side of T are not included
in T and there exist no lattice points on T ’s hypotenuse besides the endpoints,
it follows

BT “ 0. (2.16)
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Thus the number of lattice points of T equals

IT ` BT “ IT (2.16)

“
1

2
IR (2.15)

“
pb ´ 1qpa ´ 1q

2
. x Exercise 1.7.4a (2.17)

Conclusion By (2.14) the number of lattice points of S is equal to the sum

b´1
ÿ

n“1

Yna

b

]

.

But the number of lattice points of S is the same as that of T . By (2.17), the
number of lattice points in T is equal to

pb ´ 1qpa ´ 1q

2
.

Thus
b´1
ÿ

n“1

Yna

b

]

“
pa ´ 1qpb ´ 1q

2
.

˝

x Exercise 1.11.7b

Derive the result analytically as follows: By changing the index of summation,
note that

řb´1
n“1 tna{bu “

řb´1
n“1 tapb ´ nq{bu. Now apply Exercises 4(a) and (b)

to the bracket on the right.

Ñ - Apostol.Chapter 1 11.exercise 7b

Proof. Let n “ 1, . . . , b´ 1. By hypothesis, a and b are coprime. Furthermore,
n ă b for all values of n. Thus an{b is not an integer. By ¥ Exercise 1.11.4b,

Y

´
an

b

]

“ ´

Yan

b

]

´ 1. (2.18)
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Consider the following:

b´1
ÿ

n“1

Yna

b

]

“

b´1
ÿ

n“1

Z

apb ´ nq

b

^

“

b´1
ÿ

n“1

Z

ab ´ an

b

^

“

b´1
ÿ

n“1

Y

´
an

b
` a

]

“

b´1
ÿ

n“1

Y

´
an

b

]

` a. ¥ Exercise 1.11.4a

“

b´1
ÿ

n“1

´

Yan

b

]

´ 1 ` a (2.18)

“ ´

b´1
ÿ

n“1

Yan

b

]

´

b´1
ÿ

n“1

1 `

b´1
ÿ

n“1

a

“ ´

b´1
ÿ

n“1

Yan

b

]

´ pb ´ 1q ` apb ´ 1q.

Rearranging the above yields

2
b´1
ÿ

n“1

Yan

b

]

“ pa ´ 1qpb ´ 1q.

Dividing both sides of the above identity concludes the proof. ˝

2.3.5 x Exercise 1.11.8

Let S be a set of points on the real line. Let XS denote the ¶ Characteristic
Function of S. Let f be a ¶ Step Function which takes the constant value ck
on the kth open subinterval Ik of some partition of an interval ra, bs. Prove that
for each x in the union I1 Y I2 Y ¨ ¨ ¨ Y In we have

fpxq “

n
ÿ

k“1

ckXIkpxq.

This property is described by saying that every step function is a linear combi-
nation of characteristic functions of intervals.

Proof. Let x P I1YI2Y¨ ¨ ¨YIn and N “ t1, . . . , nu. Let k P N such that x P Ik.
Consider an arbitrary j P N ´ tku. By definition of a namerefref:partition,
Ij X Ik “ ∅. That is, Ij and Ik are disjoint for all j P N ´ tku. Therefore,
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by definition of the characteristic function, XIkpxq “ 1 and XIj pxq “ 0 for all
j P N ´ tku. Thus

fpxq “ ck

“ pckqp1q `
ÿ

jPN´tku
pcjqp0q

“ ckXIkpxq `
ÿ

jPN´tku
cjXIj pxq

“

n
ÿ

k“1

ckXIkpxq.

˝

2.4 Properties of the Integral of a Step Function

2.4.1 x Additive Property

Theorem 1.2. Let s and t be ¶ Step Functions on closed interval ra, bs. Then

ż b

a

rspxq ` tpxqs dx “

ż b

a

spxq dx`

ż b

a

tpxq dx .

Proof. Let s and t be step functions on closed interval ra, bs. By definition of a
step function, there exists a ¶ Partition Ps such that s is constant on each open
subinterval of Ps. Likewise, there exists a partition Pt such that t is constant
on each open subinterval of Pt. Therefore s ` t is a step function with step
partition

P “ Ps Y Pt “ tx0, x1, . . . , xnu,

the common refinement of Ps and Pt with subdivision points x0, x1, . . ., xn.
s and t remain constant on every open subinterval of P . Let sk denote the

constant value of s on the kth open subinterval of P . Let tk denote the constant
value of t on the kth open subinterval of P . By definition of the ¶ Integral of
a Step Function,

ż b

a

rspxq ` tpxqs dx “

n
ÿ

k“1

psk ` tkq ¨ pxk ´ xk´1q

“

n
ÿ

k“1

rsk ¨ pxk ´ xk´1q ` tk ¨ pxk ´ xk´1qs

“

n
ÿ

k“1

sk ¨ pxk ´ xk´1q `

n
ÿ

k“1

tk ¨ pxk ´ xk´1q

“

ż b

a

spxq dx`

ż b

a

tpxq dx .

˝
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2.4.2 x Homogeneous Property

Theorem 1.3. Let s be a ¶ Step Function on closed interval ra, bs. For every
real number c, we have

ż b

a

c ¨ spxq dx “ c

ż b

a

spxq dx .

Proof. Let s be a step function on closed interval ra, bs. By definition of a step
function, there exists a ¶ Partition P “ tx0, x1, . . . , xnu such that s is constant
on each open subinterval of P . Let sk denote the constant value of s on the kth
open subinterval of P . Then c ¨ s is a step function with step partition P . By
definition of the ¶ Integral of a Step Function,

ż b

a

c ¨ spxq dx “

n
ÿ

k“1

c ¨ sk ¨ pxk ´ xk´1q

“ c
n

ÿ

k“1

sk ¨ pxk ´ xk´1q

“ c

ż b

a

spxq dx .

˝

2.4.3 x Linearity Property

Theorem 1.4. Let s and t be ¶ Step Functions on closed interval ra, bs. For
every real c1 and c2, we have

ż b

a

rc1spxq ` c2tpxqs dx “ c1

ż b

a

spxq dx`c2

ż b

a

tpxq dx .

Proof. Let s and t be step functions on closed interval ra, bs. Let c1 and c2 be
real numbers. Then c1 ¨ s and c2 ¨ t are step functions. Then

ż b

a

rc1spxq ` c2tpxqs dx

“

ż b

a

c1spxq dx`

ż b

a

c2tpxq dx x Additive Property

“ c1

ż b

a

spxq dx`c2

ż b

a

tpxq. dx x Homogeneous Property

˝
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2.4.4 x Comparison Theorem

Theorem 1.5. Let s and t be ¶ Step Functions on closed interval ra, bs. If
spxq ă tpxq for every x in ra, bs, then

ż b

a

spxq dx ă

ż b

a

tpxq dx .

Proof. Let s and t be step functions on closed interval ra, bs. By definition of a
step function, there exists a ¶ Partition Ps such that s is constant on each open
subinterval of Ps. Likewise, there exists a partition Pt such that t is constant
on each open subinterval of Pt. Let

P “ Ps Y Pt “ tx0, x1, . . . , xnu

be the common refinement of Ps and Pt with subdivision points x0, x1, . . ., xn.
By construction, P is a step partition for both s and t. Thus s and t remain

constant on every open subinterval of P . Let sk denote the constant value of s
on the kth open subinterval of P . Let tk denote the constant value of t on the
kth open subinterval of P . By definition of the ¶ Integral of a Step Function,

ż b

a

spxq dx “

n
ÿ

k“1

sk ¨ pxk ´ xk´1q

ă

n
ÿ

k“1

tk ¨ pxk ´ xk´1q by hypothesis

“

ż b

a

tpxq dx .

˝

2.4.5 x Additivity With Respect to the Interval of Inte-
gration

Theorem 1.6. Let a, b, c P R and s a ¶ Step Function on the smallest closed
interval containing them. Then

ż c

a

spxq dx`

ż b

c

spxq dx`

ż a

b

spxq dx “ 0.

Proof. WLOG, suppose a ă c ă b and s be a step function on closed interval
ra, bs. By definition of a step function, there exists a ¶ Partition P such that s
is constant on each open subinterval of P .
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Let Q “ tx0, x1, . . . , xnu be a refinement of P that includes c as a subdivision
point. Then Q is a step partition of s and there exists some 0 ă i ă n such that
xi “ c. Let sk denote the constant value of s on the kth open subinterval of Q.
By definition of the ¶ Integral of a Step Function,

ż b

a

spxq dx “

n
ÿ

k“1

sk ¨ pxk ´ xk´1q

“

i
ÿ

k“1

sk ¨ pxk ´ xk´1q `

n
ÿ

k“i`1

sk ¨ pxk ´ xk´1q

“

ż c

a

spxq dx`

ż b

c

spxq dx .

Rearranging terms shows

0 “

ż c

a

spxq dx`

ż b

c

spxq dx´

ż b

a

spxq dx

“

ż c

a

spxq dx`

ż b

c

spxq dx`

ż a

b

spxq dx .

˝

2.4.6 x Invariance Under Translation

Theorem 1.7. Let s be a step function on closed interval ra, bs. Then

ż b

a

spxq dx “

ż b`x

a`c

spx ´ cq dx for every real c.

Proof. Let s be a step function on closed interval ra, bs. By definition of a step
function, there exists a ¶ Partition P “ tx0, x1, . . . , xnu such that s is constant
on each open subinterval of P . Let sk denote the constant value of s on the kth
open subinterval of P .

Let c be a real number. Then tpxq “ spx ´ cq is a step function on closed
interval ra`c, b`cs with partition Q “ tx0`c, x1`c, . . . , xn`cu. Furthermore,
t is constant on each open subinterval of Q. Let tk denote the value of t on the
kth open subinterval of Q. By construction, tk “ sk.
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By definition of the ¶ Integral of a Step Function,

ż b`c

a`c

spx ´ cq dx “

ż b`c

a`c

tpxq dx

“

n
ÿ

k“1

tk ¨ ppxk ` cq ´ pxk´1 ` cqq

“

n
ÿ

k“1

tk ¨ pxk ´ xk´1q

“

n
ÿ

k“1

sk ¨ pxk ´ xk´1q

“

ż b

a

spxq dx .

˝

2.4.7 x Expansion or Contraction of the Interval of Inte-
gration

Theorem 1.8. Let s be a step function on closed interval ra, bs. Then

ż kb

ka

s
´x

k

¯

dx “ k

ż b

a

spxq dx for every k ‰ 0.

Proof. Let s be a step function on closed interval ra, bs. By definition of a step
function, there exists a ¶ Partition P “ tx0, x1, . . . , xnu such that s is constant
on each open subinterval of P . Let si denote the value of s on the ith open
subinterval of P .

Let k ‰ 0 be a real number. There are two cases to consider:

Case 1 Suppose k ą 0. Then tpxq “ spx{kq is a step function on closed
interval rka, kbs with partition Q “ tkx0, kx1, . . . , kxnu. Furthermore ti “ si.
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By definition of the ¶ Integral of a Step Function,
ż kb

ka

spx{kq dx “

ż kb

ka

tpxq dx

“

n
ÿ

i“1

ti ¨ pkxi ´ kxi´1q

“ k
n

ÿ

i“1

ti ¨ pxi ´ xi´1q

“ k
n

ÿ

i“1

si ¨ pxi ´ xi´1q

“ k

ż b

a

spxq dx .

Case 2 Let k ă 0 be a real number. Then tpxq “ spx{kq is a step function on
closed interval rkb, kas with partition Q “ tkxn, kxn´1, . . . , kx0u. Furthermore
ti “ si. By definition of the ¶ Integral of a Step Function,

ż kb

ka

spx{kq dx “ ´

ż ka

kb

spx{kq dx

“ ´

ż ka

kb

tpxq dx

“ ´

n
ÿ

i“1

ti ¨ pkxi´1 ´ kxiq

“ ´

n
ÿ

i“1

si ¨ pkxi´1 ´ kxiq

“ ´

n
ÿ

i“1

si ¨ p´kq ¨ pxi ´ xi´1q

“ k
n

ÿ

i“1

si ¨ pxi ´ xi´1q

“ k

ż b

a

spxq dx .

˝

2.4.8 x Reflection Property

Theorem 17. Let s be a step function on closed interval ra, bs. Then

ż b

a

spxq dx “ ´

ż ´a

´b

sp´xq dx .
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Proof. Let k “ ´1. By x Expansion or Contraction of the Interval of Inte-
gration,

ż ´b

´a

s

ˆ

x

´1

˙

“ ´

ż b

a

spxq dx .

Simplifying the left-hand side of the above identity, and multiplying both sides
by ´1 yields the desired result. ˝

2.5 Exercises 1.15

2.5.1 x Exercise 1.15.1

Compute the value of each of the following integrals.

x Exercise 1.15.1a
ş3

´1
txu dx.

Proof. Let spxq “ txu with domain r´1, 3s. By construction, s is a step func-
tion with partition P “ t´1, 0, 1, 2, 3u “ tx0, x1, x2, x3, x4u. Let sk denote the
constant value s takes on the kth open subinterval of P . By definition of the ¶

Integral of a Step Function,

ż 3

´1

txu dx “

4
ÿ

k“1

sk ¨ pxk ´ xk´1q

“ ´1 ` 0 ` 1 ` 2

“ 2.

˝

x Exercise 1.15.1c
ş3

´1

`

txu `
X

x ` 1
2

\˘

dx.

Proof. Let spxq “ txu `
X

x ` 1
2

\

with domain r´1, 3s. By construction, s is a
step function with partition

P “ t´1,´
1

2
, 0,

1

2
, 1,

3

2
, 2,

5

2
, 3u

“ tx0, x1, x2, x3, x4, x5, x6, x7, x8u.
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Let sk denote the constant value s takes on the kth open subinterval of P . By
definition of the ¶ Integral of a Step Function,

ż 3

´1

txu `

Z

x `
1

2

^

“

8
ÿ

k“1

sk ¨ pxk ´ xk´1q

“
1

2

8
ÿ

k“1

sk

“
1

2
p´2 ´ 1 ` 0 ` 1 ` 2 ` 3 ` 4 ` 5q

“ 6.

˝

x Exericse 1.15.1e
ş3

´1
t2xu dx.

Proof. Let spxq “ t2xu. By x Hermite’s Identity, spxq “ txu `
X

x ` 1
2

\

. Thus,

by x Exercise 1.15.1c,
ż 3

´1

t2xu dx “ 6.

˝

2.5.2 x Exercise 1.15.3

Show that
şb

a
txu dx`

şb

a
t´xu dx “ a ´ b.

Proof. Let spxq “ txu and tpxq “ t´xu, both with domain ra, bs. Let x1, . . .,
xn´1 denote the integers found in interval pa, bq. Then P “ tx0, x1, . . . , xnu,
x0 “ a and xn “ b, is a step ¶ Partition of both s and t. Let sk and tk denote
the constant values s and t take on the kth open subinterval of P respectively.
By ¥ Exercise 1.11.4b, t´xu “ ´ txu ´ 1 for all x in every open subinterval of
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P . That is, sk “ ´tk ´ 1. By definition of the ¶ Integral of a Step Function,
ż b

a

txu dx`

ż b

a

t´xu dx “

n
ÿ

k“1

skpxk ´ xk´1q `

n
ÿ

k“1

tkpxk ´ xk´1q

“

n
ÿ

k“1

pxk ´ xk´1q ¨ psk ` tkq

“

n
ÿ

k“1

pxk ´ xk´1q ¨ p´tk ´ 1 ` tkq

“

n
ÿ

k“1

pxk´1 ´ xkq

“ x0 ´ xn

“ a ´ b.

˝

2.5.3 x Exercise 1.15.5

x Exercise 1.15.5a

Prove that
ş2

0

X

t2
\

dt “ 5 ´
?
2 ´

?
3.

Proof. Let sptq “
X

t2
\

with domain r0, 2s. Then s is a ¶ Step Function with

partition P “ t0, 1,
?
2,

?
3, 2u “ tx0, x1, . . . , x4u. Let sk denote the constant

value that s takes in the kth open subinterval of P . By the ¶ Integral of a Step
Function,

ż 2

0

X

t2
\

dt “

4
ÿ

k“1

sk ¨ pxk ´ xk´1q

“ 0 ¨ p1 ´ 0q ` 1 ¨ p
?
2 ´ 1q ` 2 ¨ p

?
3 ´

?
2q ` 3 ¨ p2 ´

?
3q

“ 5 ´
?
2 ´

?
3.

˝

x Exercise 1.15.5b

Compute
ş3

´3

X

t2
\

dt.

Proof. Let sptq “
X

t2
\

with domain r0, 3s. Then s is a ¶ Step Function with
¶ Partition

P “ t
?
0,

?
1,

?
2,

?
3,

?
4,

?
5,

?
6,

?
7,

?
8,

?
9u

“ tx0, x1, . . . , x9u.
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Let sk denote the constant value that s takes in the kth open subinterval of P .
By the ¶ Integral of a Step Function,

ż 3

0

X

t2
\

dt “

9
ÿ

k“1

sk ¨ pxk ´ xk´1q

“

8
ÿ

k“0

k ¨ p
?
k ` 1 ´

?
kq. (2.19)

We notice
X

t2
\

is symmetric about the y-axis. Thus

ż 0

´3

X

t2
\

dt “

ż 3

0

X

t2
\

. (2.20)

By x Additivity With Respect to the Interval of Integration,

ż 3

´3

X

t2
\

dt “

ż 0

´3

X

t2
\

dt`

ż 3

0

X

t2
\

dt

“ 2

ż 3

0

X

t2
\

dt (2.20)

“ 2

«

8
ÿ

k“0

k ¨ p
?
k ` 1 ´

?
kq

ff

. (2.19)

˝

2.5.4 x Exercise 1.15.7

x Exercise 1.15.7a

Compute
ş9

0

X?
t
\

dt.

Proof. Let sptq “
X?

t
\

with domain r0, 9s. Then s is a ¶ Step Function with
¶ Partition P “ t0, 1, 4, 9u “ tx0, x1, x2, x3u. Let sk denote the constant value
that s takes in the kth open subinterval of P . By the ¶ Integral of a Step
Function,

ż 9

0

Y?
t
]

dt “

3
ÿ

k“1

sk ¨ pxk ´ xk´1q

“ 0 ¨ p1 ´ 0q ` 1 ¨ p4 ´ 1q ` 2 ¨ p9 ´ 4q

“ 13.

˝
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x Exercise 1.15.7b

If n is a positive integer, prove that

ż n2

0

Y?
t
]

dt “ npn ´ 1qp4n ` 1q{6.

Proof. Define predicate P pnq as

ż n2

0

Y?
t
]

dt “
npn ´ 1qp4n ` 1q

6
. (2.21)

We use induction to prove P pnq holds for all integers satisfying n ą 0.

Base Case Let n “ 1. Define sptq “
X?

t
\

with domain r0, 1s. Then s is a
¶ Step Function with ¶ Partition P “ t0, 1u “ tx0, x1u. Let sk denote the
constant value of s on the kth open subinterval of P . By definition of the ¶

Integral of a Step Function, the left-hand side of (2.21) evaluates to

ż n2

0

Y?
t
]

dt “

ż 1

0

Y?
t
]

dt

“

1
ÿ

k“1

sk ¨ pxk ´ xk´1q

“ 0.

The right-hand side of (2.21) likewise evaluates to 0. Thus P p1q holds.

Induction Step Let n ą 0 be a positive integer and suppose P pnq is true.
Define sptq “

X?
t
\

with domain r0, pn` 1q2s. Then s is a ¶ Step Function with
¶ Partition

P “ t0, 1, 4, . . . , n2, pn ` 1q2u

“ tx0, x1, . . . , xn, xn`1u.
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Let sk denote the constant value of s on the kth open subinterval of P . By
definition of the ¶ Integral of a Step Function, it follows that

ż pn`1q
2

0

spxq dx

“

n`1
ÿ

k“1

sk ¨ pxk ´ xk´1q

“

n
ÿ

k“1

sk ¨ pxk ´ xk´1q ` rsn`1 ¨ pxn`1 ´ xnqs

“

ż n2

0

spxq dx` rsn`1 ¨ pxn`1 ´ xnqs

“

ż n2

0

spxq dx`
“

n ¨ ppn ` 1q2 ´ n2q
‰

“

ż n2

0

spxq dx`
“

2n2 ` n
‰

“
npn ´ 1qp4n ` 1q

6
` 2n2 ` n induction hypothesis

“
npn ´ 1qp4n ` 1q ` 12n2 ` 6n

6

“
4n3 ` 9n2 ` 5n

6

“
pn2 ` nqp4n ` 5q

6

“
pn ` 1qppn ` 1q ´ 1qp4pn ` 1q ` 1q

6
.

Thus P pn ` 1q holds.

Conclusion By mathematical induction, it follows for all positive integers n,
P pnq is true.

˝

2.5.5 x Exercise 1.15.9

Show that the following property is equivalent to x Expansion or Contraction
of the Interval of Integration:

ż kb

ka

fpxq dx “ k

ż b

a

fpkxq dx . (2.22)
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Proof. Let f be a step function on closed interval ra, bs and k ‰ 0. Applying
x Expansion or Contraction of the Interval of Integration to the right-hand
side of (2.22) yields

k

ż kb

ka

fpkx{kq dx “ k

«

k

ż b

a

fpkxq dx

ff

.

Simplifying the left-hand side and dividing both sides by k immediately yields
the desired result. ˝

2.5.6 x Exercise 1.15.11

If we instead defined the integral of step functions as
ż b

a

spxq dx “

n
ÿ

k“1

s3k ¨ pxk ´ xk´1q,

a new and different theory of integration would result. Which of the following
properties would remain valid in this new theory?

x Exercise 1.15.11a
şb

a
s `

şc

b
s “

şc

a
s.

Note

This property mirrors x Additivity With Respect to the Interval of
Integration.

Proof. The above property is valid.

WLOG, suppose a ă b ă c. Let s be a step function defined on closed
interval ra, cs. By definition of a ¶ Step Function, there exists a ¶ Partition
such that s is constant on each open subinterval of P . Let Q “ tx0, x1, . . . , xnu

be a refinement of P that includes b as a subdivision point. Then Q is a step
partition of s and there exists some 0 ă i ă n such that xi “ c. Let sk denote
the constant value of s on the kth open subinterval of Q. By (2.5.6),

ż c

a

s “

n
ÿ

k“1

s3k ¨ pxk ´ xk´1q

“

i
ÿ

k“1

s3k ¨ pxk ´ xk´1q `

n
ÿ

k“i`1

s3k ¨ pxk ´ xk´1q

“

ż b

a

s `

ż c

b

s.

˝
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x Exercise 1.15.11b
şb

a
ps ` tq “

şb

a
s `

şb

a
t.

Note

This property mirrors the x Additive Property.

Proof. The above property is invalid.

Let s and t be step functions on closed interval ra, bs. By definition of a step
function, there exists a ¶ Partition Ps such that s is constant on each open
subinterval of Ps. Likewise, there exists a partition Pt such that t is constant
on each open subinterval of Pt. Therefore s ` t is a step function with step
partition

P “ Ps Y Pt “ tx0, x1, . . . , xnu,

the common refinement of Ps and Pt with subdivision points x0, x1, . . ., xn.
s and t remain constant on every open subinterval of P . Let sk denote the

constant value of s on the kth open subinterval of Ps. Let tk denote the constant
value of t on the kth open subinterval of Pt. By (2.5.6),

ż b

a

s ` t “

n
ÿ

k“1

psk ` tkq3 ¨ pxk ´ xk´1q

“

n
ÿ

k“1

“

s3k ` 3s2ktk ` 3skt
2
k ` t3k

‰

“

n
ÿ

k“1

s3k ¨ pxk ´ xk´1q `

n
ÿ

k“1

t3k ¨ pxk ´ xk´1q `

n
ÿ

k“1

p3s2ktk ` 3skt
2
kq ¨ pxk ´ xk´1q

“

ż b

a

s `

ż b

a

t `

n
ÿ

k“1

p3s2ktk ` 3skt
2
kq ¨ pxk ´ xk´1q.

Since this last addend does not necessarily equal 0, the desired property is
invalid. ˝

x Exercise 1.15.11c
şb

a
c ¨ s “ c

şb

a
s.
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Note

This property mirrors the x Homogeneous Property.

Proof. The above property is invalid.

Let s be a step function on closed interval ra, bs. By definition of a step
function, there exists a ¶ Partition P “ tx0, x1, . . . , xnu such that s is constant
on each open subinterval of P . Let sk denote the constant value of s on the kth
open subinterval of P . Then c ¨ s is a step function with step partition P . By
(2.5.6),

ż b

a

c ¨ s “

n
ÿ

k“1

pc ¨ skq3 ¨ pxk ´ xk´1q

“

n
ÿ

k“1

c3 ¨ s3k ¨ pxk ´ xk´1q

“ c3
n

ÿ

k“1

s3k ¨ pxk ´ xk´1q

“ c3
ż b

a

s.

Since c3 does not necessarily equal c, the desired property is invalid. ˝

x Exercise 1.15.11d
şb`c

a`c
spxq dx “

şb

a
spx ` cq dx.

Note

This property mirrors x Invariance Under Translation.

Proof. The above property is valid.

Let s be a step function on closed interval ra ` c, b ` cs. By definition of a
¶ Step Function, there exists a ¶ Partition P “ tx0, x1, . . . , xnu such that s is
constant on each open subinterval of P . Let sk denote the constant value of s
on the kth open subinterval of P .

Let c be a real number. Then tpxq “ spx ` cq is a step function on closed
interval ra, bs with partition Q “ tx0 ´ c, x1 ´ c, . . . , xn ´ cu. Furthermore, t is
constant on each open subinterval of Q. Let tk denote the value of t on the kth
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open subinterval of Q. By construction, tk “ sk. By (2.5.6),

ż b`c

a`c

spxq dx “

n
ÿ

k“1

s3k ¨ pxk ´ xk´1q

“

n
ÿ

k“1

s3k ¨ ppxk ´ cq ´ pxk´1 ´ cqq

“

n
ÿ

k“1

t3k ¨ ppxk ´ cq ´ pxk´1 ´ cqq

“

ż b

a

tpxq dx

“

ż b

a

spx ` cq dx .

˝

x Exercise 1.15.11e

If spxq ă tpxq for each x in ra, bs, then
şb

a
s ă

şb

a
t.

Note

This property mirrors the x Comparison Theorem.

Proof. The above property is valid.

Let s and t be step functions on closed interval ra, bs. By definition of a ¶

Step Function, there exists a¶ Partition Ps such that s is constant on each open
subinterval of Ps. Likewise, there exists a partition Pt such that t is constant
on each open subinterval of Pt. Let

P “ Ps Y Pt “ tx0, x1, . . . , xnu

be the common refinement of Ps and Pt with subdivision points x0, x1, . . ., xn.
By construction, P is a step partition for both s and t. Thus s and t remain

constant on every open subinterval of P . Let sk denote the constant value of s
on the kth open subinterval of P . Let tk denote the constant value of t on the
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kth open subinterval of P . By (2.5.6),

ż b

a

s “

n
ÿ

k“1

s3k ¨ pxk ´ xk´1q

ă

n
ÿ

k“1

t3k ¨ pxk ´ xk´1q

“

ż b

a

t.

˝

2.6 Upper and Lower Integrals

2.6.1 x Theorem 1.9

Theorem 1.9. Every function f which is bounded on ra, bs has a lower integral
I
¯

pfq and an upper integral Ipfq satisfying the inequalities

ż b

a

spxq dx ď I
¯

pfq ď Īpfq ď

ż b

a

tpxq dx (2.23)

for all ¶ Step Functions s and t with s ď f ď t. The function f is ¶ Integrable
on ra, bs if and only if its upper and lower integrals are equal, in which case we
have

ż b

a

fpxq dx “ I
¯

pfq “ Īpfq.

Proof. Let f be a function bounded on ra, bs. We prove that (i) f has a lower
and upper integral satisfying (2.23) and (ii) that f is integrable on ra, bs if and
only if its lower and upper integrals are equal.

(i) Because f is bounded, there exists some M ą 0 such that |fpxq| ď M for
all x P ra, bs.

Let S denote the set of numbers
şb

a
spxq dx obtained as s runs through all

step functions below f . That is, let

S “

#

ż b

a

spxq dx : s ď f

+

.

Note S is nonempty since, e.g. constant function cpxq “ ´M is a member.

Likewise, let T denote the set of numbers
şb

a
tpxq dx obtained as t runs

through all step functions above f . That is, let

T “

#

ż b

a

tpxq dx : f ď t

+

.
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Note T is nonempty since e.g. constant function cpxq “ M is a member.
By construction, s ď t for every s in S and t in T . Therefore ¥ Theorem

I.34 tells us S has a ¶ Supremum, T has an ¶ Infimum, and supS ď inf T . By
definition of the ¶ Lower Integral, I

¯
pfq “ supS. By definition of the ¶ Upper

Integral, Īpfq “ inf S. Thus (2.23) holds.

(ii) By definition of integrability, f is integrable on ra, bs if and only if there
exists one and only one number I such that

ż b

a

spxq dx ď I ď

ż b

a

tpxq dx

for every pair of step functions s and t satisfying (1). By (2.23) and the definition
of the supremum/infimum, this holds if and only if I

¯
pfq “ Īpfq, concluding the

proof.
˝

2.7 The Area of an Ordinate Set Expressed as
an Integral

2.7.1 x Theorem 1.10

Theorem 1.10. Let f be a nonnegative function, ¶ Integrable on an interval
ra, bs, and let Q denote the ordinate set of f over ra, bs. Then Q is measurable

and its area is equal to the integral
şb

a
fpxq dx.

Proof. Let f be a nonnegative function, ¶ Integrable on ra, bs. By definition
of integrability, there exists one and only one number I such that

ż b

a

spxq dx ď I ď

ż b

a

tpxq dx

for every pair of step functions s and t satisfying (1). In other words, I is the
one and only number that satisfies

apSq ď I ď apT q

for every pair of step regions S Ď Q Ď T . By the x Exhaustion Property, Q is

measurable and its area is equal to I “
şb

a
fpxq dx. ˝

2.7.2 x Theorem 1.11

Theorem 1.11. Let f be a nonnegative function, integrable on an interval
ra, bs. Then the graph of f , that is, the set

tpx, yq | a ď x ď b, y “ fpxqu, (2.24)
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is measurable and has area equal to 0.

Proof. Let f be a nonnegative function, integrable on an interval ra, bs. Let

Q1 “ tpx, yq | a ď x ď b, 0 ď y ă fpxqu.

We show that (i) Q1 is measurable with area equal to
şb

a
fpxq dx and (ii) the

graph of f is meaurable with area equal to 0.

(i) By definition of integrability, there exists one and only one number I such
that

ż b

a

spxq dx ď I ď

ż b

a

tpxq dx

for every pair of step functions s and t satisfying (1). In other words, I is the
one and only number that satisfies

apSq ď I ď apT q

for every pair of step regions S Ď Q1 Ď T . By the x Exhaustion Property, Q1

is measurable and its area is equal to I “
şb

a
fpxq dx.

(ii) Let Q denote the ordinate set of f . By x Theorem 1.10, Q is measurable

with area equal to the integral I “
şb

a
fpxq dx. By (i), Q1 is measurable with

area also equal to I. We note the graph of f , (2.24), is equal to set Q ´ Q1. By
the ¶ Difference Property, Q ´ Q1 is measurable and

apQ ´ Q1q “ apQq ´ apQ1q “ I ´ I “ 0.

Thus the graph of f is measurable and has area equal to 0.
˝

2.8 Integrability of Bounded Monotonic
Functions

2.8.1 x Theorem 1.12

Theorem 1.12. If f is ¶ Monotonic on a closed interval ra, bs, then f is ¶

Integrable on ra, bs.

Proof. Let f be a monotonic function on closed interval ra, bs. That is to say,
either f is increasing on ra, bs or f is decreasing on ra, bs. Because f is on a closed
interval, it is bounded. By x Theorem 1.9, f has a ¶ Lower Integral I

¯
pfq, f

has an ¶ Upper Integral Īpfq, and f is integrable if and only if I
¯

pfq “ Īpfq.
Consider a partition P “ tx0, x1, . . . , xnu of ra, bs in which xk ´ xk´1 “

pb ´ aq{n for each k “ 1, . . . , n. There are two cases to consider:
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Case 1 Suppose f is increasing. Let s be the step function below f with
constant value fpxk´1q on every kth open subinterval of P . Let t be the step
function above f with constant value fpxkq on every kth open subinterval of P .
Then, by (2.23), it follows

ż b

a

spxq dx ď I
¯

pfq ď Īpfq ď

ż b

a

tpxq dx . (2.25)

By definition of the ¶ Integral of a Step Function,

ż b

a

spxq dx “

n
ÿ

k“1

fpxk´1q

„

b ´ a

n

ȷ

ż b

a

tpxq dx “

n
ÿ

k“1

fpxkq

„

b ´ a

n

ȷ

.

Thus

ż b

a

tpxq dx´

ż b

a

spxq dx “

n
ÿ

k“1

fpxkq

„

b ´ a

n

ȷ

´

n
ÿ

k“1

fpxk´1q

„

b ´ a

n

ȷ

“

„

b ´ a

n

ȷ n
ÿ

k“1

fpxkq ´ fpxk´1q

“
pb ´ aqpfpbq ´ fpaqq

n
.

By (2.25),

I
¯

pfq ď Īpfq

ď

ż b

a

tpxq dx

“

ż b

a

spxq dx`
pb ´ aqpfpbq ´ fpaqq

n

ď I
¯

pfq `
pb ´ aqpfpbq ´ fpaqq

n
.

Since the above holds for all positive integers n, ¥ Theorem I.31 indicates
I
¯

pfq “ Īpfq.

Case 2 Suppose f is decreasing. Let s be the step function below f with
constant value fpxkq on every kth open subinterval of P . Let t be the step
function above f with constant value fpxk´1q on every kth open subinterval of
P . Then, by (2.23), it follows

ż b

a

spxq dx ď I
¯

pfq ď Īpfq ď

ż b

a

tpxq dx . (2.26)
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By definition of the ¶ Integral of a Step Function,

ż b

a

spxq dx “

n
ÿ

k“1

fpxkq

„

b ´ a

n

ȷ

ż b

a

tpxq dx “

n
ÿ

k“1

fpxk´1q

„

b ´ a

n

ȷ

.

Thus

ż b

a

tpxq dx´

ż b

a

spxq dx “

n
ÿ

k“1

fpxk´1q

„

b ´ a

n

ȷ

´

n
ÿ

k“1

fpxkq

„

b ´ a

n

ȷ

“

„

b ´ a

n

ȷ n
ÿ

k“1

fpxk´1q ´ fpxkq

“
pb ´ aqpfpaq ´ fpbqq

n
.

By (2.26),

I
¯

pfq ď Īpfq

ď

ż b

a

tpxq dx

“

ż b

a

spxq dx`
pb ´ aqpfpaq ´ fpbqq

n

ď I
¯

pfq `
pb ´ aqpfpaq ´ fpbqq

n
.

Since the above holds for all positive integers n, ¥ Theorem I.31 indicates
I
¯

pfq “ Īpfq.
˝

2.8.2 x Theorem 1.13

Theorem 1.13. Assume f is increasing on a closed interval ra, bs. Let xk “ a`

kpb´aq{n for k “ 0, 1, . . . , n. If I is any number which satisfies the inequalities

b ´ a

n

n´1
ÿ

k“0

fpxkq ď I ď
b ´ a

n

n
ÿ

k“1

fpxkq (2.27)

for every integer n ě 1, then I “
şb

a
fpxq dx.

Proof. Let f be increasing on a closed interval ra, bs and I be a number sat-
isfying (2.27). Let s be the step function below f with constant value fpxk´1q
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on every kth open subinterval of P . Let t be the step function above f with
constant value fpxkq on every kth open subinterval of P . By definition of the
¶ Integral of a Step Function,

ż b

a

spxq dx “

n
ÿ

k“1

fpxk´1q

„

b ´ a

n

ȷ

“

n´1
ÿ

k“0

fpxkq

„

b ´ a

n

ȷ

ż b

a

tpxq dx “

n
ÿ

k“1

fpxkq

„

b ´ a

n

ȷ

.

Therefore (2.27) can alternatively be written as
ż b

a

spxq dx ď I ď

ż b

a

tpxq dx . (2.28)

By x Theorem 1.12, f is integrable. Therefore x Theorem 1.9 indicates f
satisfies

ż b

a

spxq dx ď

ż b

a

fpxq dx ď

ż b

a

tpxq dx . (2.29)

Manipulating (2.28) and (2.29) together yields

I ´

ż b

a

fpxq dx ď

ż b

a

tpxq dx´

ż b

a

spxq dx,

ż b

a

fpxq dx´I ď

ż b

a

tpxq dx´

ż b

a

spxq dx .

Combining the above inequalities in turn yields

0 ď

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a

fpxq dx´I

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż b

a

tpxq dx´

ż b

a

spxq dx

“

n
ÿ

k“1

fpxkq

„

b ´ a

n

ȷ

´

n
ÿ

k“1

fpxk´1q

„

b ´ a

n

ȷ

“
b ´ a

n

n
ÿ

k“1

fpxkq ´ fpxk´1q

“
pb ´ aqpfpbq ´ fpaqq

n
.

The above chain of inequalities holds for all positive integers n ě 1, meaning ¥

Theorem I.31 applies. Thus
ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a

fpxq dx´I

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0,
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which immediately implies the desired result. ˝

2.8.3 x Theorem 1.14

Theorem 1.14. Assume f is descreasing on ra, bs. Let xk “ a` kpb´ aq{n for
k “ 0, 1, . . . , n. If I is any number which satisfies the inequalities

b ´ a

n

n
ÿ

k“1

fpxkq ď I ď
b ´ a

n

n´1
ÿ

k“0

fpxkq (2.30)

for every integer n ě 1, then I “
şb

a
fpxq dx.

Proof. Let f be decreasing on a closed interval ra, bs and I be a number sat-
isfying (2.30). Let s be the step function below f with constant value fpxkq

on every kth open subinterval of P . Let t be the step function above f with
constant value fpxk´1q on every kth open subinterval of P . By definition of the
¶ Integral of a Step Function,

ż b

a

spxq dx “

n
ÿ

k“1

fpxkq

„

b ´ a

n

ȷ

ż b

a

tpxq dx “

n
ÿ

k“1

fpxk´1q

„

b ´ a

n

ȷ

“

n´1
ÿ

k“0

fpxq

„

b ´ a

n

ȷ

.

Therefore (2.30) can alternatively be written as

ż b

a

spxq dx ď I ď

ż b

a

tpxq dx . (2.31)

By x Theorem 1.12, f is integrable. Therefore x Theorem 1.9 indicates f
satisfies

ż b

a

spxq dx ď

ż b

a

fpxq dx ď

ż b

a

tpxq dx . (2.32)

Manipulating (2.31) and (2.32) together yields

I ´

ż b

a

fpxq dx ď

ż b

a

tpxq dx´

ż b

a

spxq dx,

ż b

a

fpxq dx´I ď

ż b

a

tpxq dx´

ż b

a

spxq dx .
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Combining the above inequalities in turn yields

0 ď

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a

fpxq dx´I

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż b

a

tpxq dx´

ż b

a

spxq dx

“

n
ÿ

k“1

fpxkq

„

b ´ a

n

ȷ

´

n
ÿ

k“1

fpxk´1q

„

b ´ a

n

ȷ

“
b ´ a

n

n
ÿ

k“1

fpxkq ´ fpxk´1q

“
pb ´ aqpfpbq ´ fpaqq

n
.

The above chain of inequalities holds for all positive integers n ě 1, meaning ¥

Theorem I.31 applies. Thus

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a

fpxq dx´I

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0,

which immediately implies the desired result. ˝

2.8.4 - Integral of
şb

0
xp dx when p is a Positive Integer

Theorem 1.15. If p is a positive integer and b ą 0, we have

ż b

0

xp dx “
bp`1

p ` 1
.

Proof. TODO ˝
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