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Chapter R

Reference

R.1 ¶ Construction Sequence

A construction sequence is a ¶ Finite Sequence ⟨ϵ1, . . . , ϵn⟩ of ¶ Expressions
such that for each i ď n we have at least one of

ϵi is a sentence symbol

ϵi “ E␣pϵjq for some j ă i

ϵi “ E˝pϵj , ϵkq for some j ă i, k ă i

where ˝ is one of the binary connectives ^, _, ñ, ô.

R.2 ¶ Expression

An expression is a ¶ Finite Sequence of symbols.

R.3 ¶ Finite Sequence

S is a finite sequence (or string) of members of set A if and only if, for some
positive integer n, we have S “ ⟨x1, . . . , xn⟩, where each xi P A.

3



R.4 ¶ Formula-Building Operations

The formula-building operations (on expressions) are defined by the equa-
tions:

E␣pαq “ p␣αq
E^pα, βq “ pα^ βq

E_pα, βq “ pα_ βq

Eñpα, βq “ pαñ βq

Eôpα, βq “ pαô βq

Ñ - Enderton.Logic.Chapter 1.Wff
k

- Not
k

- And
k

- Or
k

- Iff

R.5 ¶ n-tuple

An n-tuple is recursively defined as

⟨x1, . . . , xn`1⟩ “ ⟨⟨x1, . . . , xn⟩ , xn`1⟩

for n ą 1. We also define ⟨x⟩ “ x.

k
- Prod

R.6 ¶ Tautological Implication

Consider a set Σ of ¶ Well-Formed Formulas and another wff τ . Σ tautolog-
ically implies τ (written Σ ( τ) if and only if every ¶ Truth Assignment for
the sentence symbols in Σ and τ that satisfies every member of Σ also satisfies
τ . If Σ is singleton tσu, then we write ”σ ( τ” in place of ”tσu ( τ .”

If both σ ( τ and τ ( σ, then σ and τ are said to be tautologically
equivalent (written σ () τ).

R.7 ¶ Truth Assignment

A truth assignment v for a set S of sentence symbols is a function

v : S Ñ tF, T u

assigning either T or F to each symbol in S.
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♠ ♠ ♠

Let S̄ be the set of ¶ Well-Formed Formulas that can be built up from S by
the five ¶ Formula-Building Operations. We define extension v̄ of v,

v̄ : S̄ Ñ tF, T u,

as the function that satisfies the following conditions for any α, β P S:

(0) For any A P S, v̄pAq “ vpAq. (Thus v̄ is indeed an extension of v.)

(1) v̄pp␣αqq “

#

T if v̄pαq “ F,

F otherwise.

(2) v̄ppα^ βqq “

#

T if v̄pαq “ T and v̄pβq “ T,

F otherwise.

(3) v̄ppα_ βqq “

#

T if v̄pαq “ T or v̄pβq “ T (or both),

F otherwise.

(4) v̄ppαñ βqq “

#

F if v̄pαq “ T and v̄pβq “ F,

T otherwise.

(5) v̄ppαô βqq “

#

T if v̄pαq “ v̄pβq,

F otherwise.

We say that truth assignment v satisfies ϕ if and only if v̄pϕq “ T .

k
- True

k
- False

R.8 ¶ Well-Formed Formula

A well-formed formula (wff) is an ¶ Expression that can be built up from
the sentence symbols by applying some finite number of times the ¶ Formula-
Building Operations.

Ñ - Enderton.Logic.Chapter 1.Wff
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Chapter 0

Useful Facts About Sets

0.1 ¥ Lemma 0A

Lemma 0A. Assume that ⟨x1, . . . , xm⟩ “ ⟨y1, . . . , ym, . . . , ym`k⟩. Then x1 “

⟨y1, . . . , yk`1⟩.

Proof. For natural number m, let P pmq be the statement:

Induction Hypothesis (IH)

If ⟨x1, . . . , xm⟩ “ ⟨y1, . . . , ym, . . . , ym`k⟩ then x1 “ ⟨y1, . . . , yk`1⟩.

We proceed by induction on m.

Base Case Suppose ⟨x1⟩ “ ⟨y1, . . . , y1`k⟩. By definition of an ¶ n-tuple,
⟨x1⟩ “ x1. Thus x1 “ ⟨y1, . . . , yk`1⟩. Hence P p1q holds true.

Inductive Step Suppose for m ě 1 that P pmq is true and assume

⟨x1, . . . , xm`1⟩ “ ⟨y1, . . . , ym`1, . . . , ym`1`k⟩ . (1)

By definition of an ¶ n-tuple, we can decompose (1) into the following two
identities

xm`1 “ ym`1`k

⟨x1, . . . , xm⟩ “ ⟨y1, . . . , ym`k⟩ .

By (IH), P pmq implies x1 “ ⟨y1, . . . , yk`1⟩. Hence P pm` 1q holds true.

Conclusion By induction, P pmq holds true for all m ě 1.
˝
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Chapter 1

Sentential Logic

1.1 The Language of Sentential Logic

1.1.1 ¥ Induction Principle

Theorem 1. If S is a set of ¶ Well-Formed Formulas containing all the sen-
tence symbols and closed under all five ¶ Formula-Building Operations, then S
is the set of all wffs.

Ñ - Enderton.Logic.Chapter 1.Wff.rec

Proof. We note every well-formed formula can be characterized by a ¶ Con-
struction Sequence. For natural number m, let P pmq be the statement:

Induction Hypothesis (IH)

Every wff characterized by a construction sequence of length m is in S.

We proceed by strong induction on m.

Base Case Let ϕ denote a wff characterized by a construction sequence of
length 1. Then it must be that ϕ is a single sentence symbol. By hypothesis, S
contains all the sentence symbols. Thus P p1q holds true.

Inductive Step Suppose P p0q, P p1q, . . ., P pmq holds true and let ϕ denote
a wff characterized by a construction sequence of length m` 1. By definition of
a construction sequence, one of the following holds:

ϕ is a sentence symbol (1.1)

ϕ “ E␣pϵjq for some j ă m` 1 (1.2)

ϕ “ E˝pϵj , ϵkq for some j ă m` 1, k ă m` 1 (1.3)

7
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where ˝ is one of the binary connectives ^, _, ñ, ô. We consider each case in
turn.

(1.1) By hypothesis, all sentence symbols are in S. Thus ϕ P S.

(1.2) Suppose ϕ “ E␣pϵjq for some j ă m ` 1. By (IH), ϵj is in S. By
hypothesis, S is closed under E␣. Thus ϕ P S.

(1.3) Suppose ϕ “ E˝pϵj , ϵkq for some j ă m ` 1, k ă m ` 1, By (IH), ϵj
and ϵk is in S. By hypothesis, S is closed under E˝ for all possible candidates
of ˝. Thus ϕ P S.

Subconclusion Since the above three cases are exhaustive, P pm`1q holds.

Conclusion By strong induction, P pmq holds true for all natural numbers
m ě 1. Since every well-formed formula is characterized by a construction
sequence, the set of all wffs is a subset of S. Likewise, it obviously holds that S
is a subset of all wffs. Thus S is precisely the set of all wffs.

˝

1.1.2 ¥ Balanced Parentheses

Lemma 2. All ¶ Well-Formed Formulas have an equal number of left and right
parentheses.

Proof. Define

S “ tϕ | ϕ is a wff with a balanced number of parenthesesu.

We prove that (i) all the sentence symbols are members of S and (ii) S is closed
under the five ¶ Formula-Building Operations. We then conclude with (iii) the
proof of the theorem statement.

(i) By definition, well-formed formulas comprising a single sentence symbol
do not have any parentheses. Thus all sentence symbols are members of S.

(ii) Let α, β P S. By definition, E␣pαq “ p␣αq. Thus one additional left and
right parenthesis is introduced. Since α is assumed to have an equal number of
left and right parentheses, E␣pαq P S. Likewise, E˝pα, βq “ pα ˝βq where ˝ is
one of the binary connectives ^, _, ñ, ô. Again, an additional left and right
parenthesis is introduced. Since α and β are assumed to have a balanced number
of parentheses, E˝pα, βq P S. Hence S is closed under the five formula-building
operations.
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(iii) By (i) and (ii), the ¥ Induction Principle implies S is the set of all
wffs. Thus all well-formed formulas have an equal number of left and right
parentheses.

˝

1.1.3 ¥ Parentheses Count

Lemma 3. Let ϕ be a ¶ Well-Formed Formula and c be the number of places
at which a sentential connective symbol exists. Then there is 2c parentheses in
ϕ.

Ñ - Enderton.Logic.Chapter 1.paren count double sentential count

Proof. Define
S “ tϕ | ϕ is a wff with 2c parenthesesu.

We prove that (i) all the sentence symbols are members of S and (ii) S is closed
under the five ¶ Formula-Building Operations. We then conclude with (iii) the
proof of the theorem statement.

(i) A sentence symbol, by itself, has no sentential connectives. Likewise, it
has 0 parentheses. Thus S contains every sentence symbol.

(ii) Let α, β P S. By definition, E␣pαq “ p␣αq. Then E␣pαq introduces
two additional parentheses and one additional sentential connective symbol.
Thus E␣pαq P S. Likewise, E˝pα, βq “ pα ˝βq where ˝ is one of the binary
connectives ^, _, ñ, ô. E˝pα, βq also introduces two additional parentheses
and one additional connective symbol. Thus E˝pα, βq P S. Hence S is closed
under the five formula-building operations.

(iii) By (i) and (ii), the ¥ Induction Principle implies S is the set of all wffs.
Thus every wff has 2c parentheses in ϕ, where c denotes the number of places
at which a sentential connective symbol exists.

˝

1.2 Truth Assignments

1.2.1 - Theorem 12A

Theorem 12A. For any ¶ Truth Assignment v for a set S there is a unique
extension v̄ : S̄ Ñ tF, T u.

Proof. TODO ˝
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1.2.2 - Compactness Theorem

Theorem 3. Let Σ be an infinite set of ¶ Well-Formed Formulas such that for
any finite subset Σ0 of Σ, there is a ¶ Truth Assignment that satisfies every
member of Σ0. Then there is a truth assignment that satisfies every member of
Σ.

Proof. TODO ˝

1.3 A Parsing Algorithm

1.3.1 ¥ Lemma 13A

Lemma 13A. Every wff has the same number of left as right parentheses.

Proof. Refer to ¥ Balanced Parentheses. ˝

1.3.2 - Lemma 13B

Lemma 13B. Any proper initial segment of a wff contains an excess of left
parentheses. Thus no proper initial segment of a wff can itself be a wff.

Proof. TODO ˝

1.4 Exercises 1

1.4.1 ¥ Exercise 1.1.1

Give three sentences in English together with translations into our formal lan-
guage. The sentences should be chosen so as to have an interesting structure,
and the translations should each contain 15 or more symbols.

Answer. We begin first with the English sentences:

(i) He can juggle beach balls, bowling pins, and hackysacks unless he is tired,
in which case he can only juggle beach balls.

(ii) If Lauren goes to the moves with Sam, he will watch Barbie and eat
popcorn, but if Lauren does not, he will watch Oppenheimer and eat
gummy worms.

(iii) Trees produce oxygen if they are alive and well, able to pull nutrients from
the earth, and receive ample water.

10



(i) We use the following translation: ”To juggle beach balls” (B), ”to juggle
bowling pins” (P), ”to juggle hackysacks” (H), and ”he is tired” (T). This yields
the following translation:

pB ^ pp␣T q ñ pP ^Hqqq.

(ii) We use the following translation: ”Lauren goes to the movies” (L), ”Sam
will watch Oppenheimer” (O), ”Sam will watch ”Barbie” (B), ”Sam will eat
popcorn” (P), and ”Sam will eay gummy worms” (G). This yields the following
translation:

pppL^Bq ^ P q _ ppp␣Lq ^Oq ^Gqq.

(iii) We use the following translation: ”Trees produce oxygen” (O), ”the tree
is alive” (A), ”the tree is well” (W), ”can pull nutrients from the earth” (N),
and ”receives ample water” (R). This yields the following translation:

pO ðñ pppA^W q ^Nq ^Rqq.

˝

1.4.2 x Exercise 1.1.2

Show that there are no wffs of length 2, 3, or 6, but that any other positive
length is possible.

Ñ - Enderton.Logic.Chapter 1.exercise 1 1 2 i

Ñ - Enderton.Logic.Chapter 1.exercise 1 1 2 ii

Proof. Define

S “ tϕ | ϕ is a wff and the length of ϕ is not 2, 3, or 6.u.

We prove that (i) all the sentence symbols are members of S and (ii) S is closed
under the five ¶ Formula-Building Operations. We then conclude with (iii) the
proof of the theorem statement.

(i) Sentence symbols, by definition, have length 1. Thus every sentence symbol
is a member of S.

(ii) Define L to be the length function mapping arbitrary wff to its length.
Let α, β P S. Then Lpαq and Lpβq each evaluate to 1, 4, 5, or a value larger
than 6.

By definition, E␣pαq “ p␣αq. Thus LpE␣pαqq “ Lpαq ` 3. Enumerating
through the possible values of Lpαq shows E␣pαq P S. Likewise, E˝pα, βq “
pα ˝βq where ˝ is one of the binary connectives ^, _,ñ,ô. Thus LpE˝pα, βqq “

11
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Lpαq ` Lpβq ` 3. Again, enumerating through the possible values of Lpαq and
Lpβq shows E˝pα, βq P S.

Hence S is closed under the five formula-building operations.

(iii) By (i) and (ii), the ¥ Induction Principle implies S is the set of all wffs.
It remains to be shown that a wff of any positive length excluding 2, 3, and 6
are possible.

Let ϕ1 “ A1, ϕ2 “ pA1 ^ A2q, and ϕ3 “ ppA1 ^ A2q ^ A3q. Note these are
wffs of lengths 1, 5, and 9 respectively. Then n repeated applications of E␣
yields wffs of length 1` 3n, 5` 3n, and 9` 3n respectively. But

t1` 3n | n P Nu,
t5` 3n | n P Nu, and

t9` 3n | n P Nu

form a ¶ Partition of set N´ t2, 3, 6u. Thus a wff of any other positive length
besides 2, 3, and 6 is possible.

˝

1.4.3 ¥ Exercise 1.1.3

Let α be a wff; let c be the number of places at which binary connective symbols
p^,_,ñ,ôq occur in α; let s be the number of places at which sentence symbols
occur in α. (For example, if α is pAñ p␣Aqq then c “ 1 and s “ 2.) Show by
using the induction principle that s “ c` 1.

Ñ - Enderton.Logic.Chapter 1.exercise 1 1 3

Proof. Define
S “ tϕ | ϕ is a wff such that s “ c` 1u. (1.4)

We prove that (i) all the sentence symbols are members of S and (ii) S is closed
under the five ¶ Formula-Building Operations. We then conclude with (iii) the
proof of the theorem statement.

(i) Let ϕ “ An be an arbitrary sentence symbol. The number of places at
which sentence symbols occur in ϕ is 1. The number of places at which binary
connective symbols occur in ϕ is 0. Hence ϕ P S.

(ii) Let α, β P S. Denote the number of places at which sentence symbols
occur in each as sα and sβ respectively. Likewise, denote the number of places
at which binary connective symbols occur as cα and cβ .

By definition, E␣pαq “ p␣αq. The number of sentence and binary connective
symbols in E␣pαq does not change. Thus E␣pαq P S. Likewise, E˝pα, βq “ pα ˝βq
where ˝ is one of the binary connectives ^, _, ñ, ô. Therefore E˝pα, βq has

12
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sα ` sβ sentence symbols and cα ` cβ ` 1 binary connective symbols. But (1.4)
implies

sα ` sβ “ pcα ` 1q ` pcβ ` 1q

“ pcα ` cβ ` 1q ` 1,

meaning E˝pα, βq P S.
Hence S is closed under the five formula-building operations.

(iii) By (i) and (ii), the ¥ Induction Principle indicates S is the set of all
wffs.

˝

1.4.4 ¥ Exercise 1.1.4

Assume we have a construction sequence ending in ϕ, where ϕ does not con-
tain the symbol A4. Suppose we delete all the expressions in the construction
sequence that contain A4. Show that the result is still a legal construction
sequence.

Proof. Let S denote a ¶ Construction Sequence ⟨ϵ1, . . . , ϵn⟩ such that ϵn “ ϕ.
Let S1 “ ⟨ϵi1 , . . . , ϵim⟩ denote the construction sequence resulting from deleting
all expressions in S containing A4. Fix 1 ď j ď m. Then there exists some
1 ď k ď n such that ϵij “ ϵk. By definition of a construction sequence, there
are three cases to consider:

Case 1 Suppose ϵk is a sentence symbol. Then ϵij is also sentence symbol.

Case 2 Suppose ϵk “ E␣pϵaq for some a ă k. It must be that A4 is not found
in ϵa, else an immediate contradiction is raised. Therefore ϵa is a member of S1

that precedes ϵij . Hence ϵij “ E␣pϵiaq for some a ă j.

Case 3 Suppose ϵk “ E˝pϵa, ϵbq for some a, b ă k where ˝ is one of the binary
connectives ^, _, ñ, ô. It must be that A4 is found in neither ϵa nor ϵb, else
an immediate contradiction is raised. Therefore ϵa and ϵb is a member of S1,
both of which precede ϵij . Hence ϵij “ E˝pϵia , ϵibq for some a, b ă j.

Conclusion Since the above cases are exhaustive and apply to an arbitrary
member of S1, it must be that every member of S1 is valid. Hence S1 is still a
legal construction sequence.

˝

1.4.5 ¥ Exercise 1.1.5

Suppose that α is a wff not containing the negation symbol ␣.

13



¥ Exercise 1.1.5a

Show that the length of α (i.e., the number of symbols in the string) is odd.
Suggestion: Apply induction to show that the length is of the form 4k ` 1.

Ñ - Enderton.Logic.Chapter 1.exercise 1 1 5a

Proof. Define L to be the length function mapping arbitrary ¶ Well-Formed
Formula to its length and let

S “ tϕ | ϕ is a wff containing ␣ or Dk P N, Lpϕq “ 4k ` 1u. (1.5)

We prove that (i) all the sentence symbols are members of S and (ii) S is closed
under the five ¶ Formula-Building Operations. We then conclude with (iii) the
proof of the theorem statement.

(i) Every sentence symbol has length 1 by definition. That is, every sentence
symbol has length p4qp0q ` 1. Hence S contains every sentence symbol.

(ii) Let α, β P S. Then there exists some kα and kβ such that Lpαq “ 4kα` 1
and Lpβq “ 4kβ ` 1. Clearly S is closed under E␣. Next consider E˝pα, βq “
pα ˝βq where ˝ is one of the binary connectives ^, _, ñ, ô. Then

Lpα, βq “ Lpαq ` Lpβq ` 3

“ p4kα ` 1q ` p4kβ ` 1q ` 3

“ 4kα ` 4kβ ` 4` 1

“ 4pkα ` kβ ` 1q ` 1.

Therefore, there exists a k P N, namely k “ kα`kβ`1, such that LpE˝pα, βqq “
4k ` 1.

Hence S is closed under the five formula-building operations.

(iii) By (i) and (ii), the ¥ Induction Principle indicates S is the set of all
wffs. Thus all well-formed formulas not containing symbol ␣ has length 4k ` 1
for some k P N. Therefore these well-formed formulas have odd length.

˝

¥ Exercise 1.1.5b

Show that more than a quarter of the symbols are sentence symbols. Suggestion:
Apply induction to show that the number of sentence symbols is of the form
k ` 1.

Ñ - Enderton.Logic.Chapter 1.exercise 1 1 5b
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Proof. Let ϕ be a ¶ Well-Formed Formula. By ¥ Exercise 1.1.3, the number
of sentence symbols of ϕ is k ` 1, where k is the number of places at which
binary connective symbols occur in ϕ. By ¥ Parentheses Count, the number of
parentheses in ϕ is 2k. Thus ϕ has length pk ` 1q ` k ` 2k “ 4k ` 1. But

k ` 1

4k ` 1
ą

k ` 1

4k ` 4
“

1

4
.

Hence more than a quarter of the symbols of ϕ are sentence symbols.
˝

1.4.6 ¥ Exercise 1.2.1

Show that neither of the following two formulas tautologically implies the other:

pAô pB ô Cqq, (1.6)

ppA^ pB ^ Cqq _ pp␣Aq ^ pp␣Bq ^ p␣Cqqqq. (1.7)

Suggestion: Only two ¶ Truth Assignments are needed, not eight.

Ñ - Enderton.Logic.Chapter 1.exercise 1 2 1 i

Ñ - Enderton.Logic.Chapter 1.exercise 1 2 1 ii

Proof. First, suppose A “ T , B “ F , and C “ F . Then (1.6) evaluates to T
but (1.7) evaluates to F . Therefore (1.6) * (1.7).

Next, suppose A “ F , B “ F , and C “ F . Then (1.7) evaluates to T but
(1.6) evaluates to F . Therefore (1.7) * (1.6). ˝

1.4.7 ¥ Exercise 1.2.2a

Is pppP ñ Qq ñ P q ñ P q a tautology?

Ñ - Enderton.Logic.Chapter 1.exercise 1 2 2a

Proof. Yes. To prove, consider the following truth table:

pppP ñ Qq ñ P q ñ P q
T T T T T T T
T F F T T T T
F T T F F T F
F T F F F T F

˝
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1.4.8 ¥ Exercise 1.2.2b

Define σk recursively as follows: σ0 “ pP ñ Qq and σk`1 “ pσk ñ P q. For
which values of k is σk a tautology? (Part (a) corresponds to k “ 2.)

Ñ - Enderton.Logic.Chapter 1.exercise 1 2 2b i

Ñ - Enderton.Logic.Chapter 1.exercise 1 2 2b ii

Ñ - Enderton.Logic.Chapter 1.exercise 1 2 2b iii

Proof. We prove that σk is a tautology if and only if k is an even integer greater
than zero. To do so, we show (i) that σk is a tautology for all even k ą 0, (ii)
σ0 is not a tautology, and (iii) σk is not a tautology for all odd k.

(i) Let P pkq be the predicate, ”σk is a tautology.” We prove P pkq holds true
for all even k ą 0 via induction.

Base Case Let k “ 2. By definition,

σ2 “ pppP ñ Qq ñ P q ñ P q.

¥ Exercise 1.2.2a indicates σ2 is a tautology. Hence P p2q is true.

Inductive Step Suppose P pkq holds for some even k ą 0. By definition,

σk`2 “ ppσk ñ P q ñ P q.

Consider the truth table of the above:

ppσk ñ P q ñ P q
T T T T T
T T T T T
T F F T F
T F F T F

This shows σk`2 is a tautology. Hence P pk ` 2q is true.

Subconclusion By induction, P pkq is true for all even k ą 0.

(ii) By definition,
σ0 “ pP ñ Qq.

This is clearly not a tautology since σ0 evaluates to F when P “ T and Q “ F .

(iii) Let k ą 0 be an odd natural number. There are two cases to consider:
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Case 1 Suppose k “ 1. Then σk “ σ1 “ ppP ñ Qq ñ P q. The following
truth table shows σ1 is not a tautology:

pppP ñ Qq ñ P q
T T T T T
T F F T T
F T T F F
F T F F F

Case 2 Suppose k ą 1. Then k ´ 1 ą 0 is an even number. By definition,

σk “ pσk´1 ñ P q.

By (1.4.8), σk´1 is a tautology. The following truth table shows σk is not:

pσk´1 ñ P q
T T T
T T T
T F F
T F F

˝

1.4.9 ¥ Exercise 1.2.3a

Determine whether or not ppP ñ Qq _ pQñ P qq is a tautology.

Ñ - Enderton.Logic.Chapter 1.exercise 1 2 3a

Proof. Consider the following truth table:

ppP ñ Qq _ pQ ñ P qq
T T T T T T T
T F F T F T T
F T T T T F F
F T F T F T F

The above makes it immediately evident that ppP ñ Qq _ pQ ñ P qq is a
tautology. ˝

1.4.10 ¥ Exercise 1.2.3b

Determine whether or not ppP ^ Qq ñ Rq tautologically implies ppP ñ Rq _
pQñ Rqq.

Ñ - Enderton.Logic.Chapter 1.exercise 1 2 3b
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Proof. Consider the following truth table:

P Q R ppP ^Qq ñ Rq ppP ñ Rq _ pQñ Rqq
T T T T T
T T F F F
T F T T T
T F F T T
F T T T T
F T F T T
F F T T T
F F F T T

The above makes it immediately evident that ppP ^ Qq ñ Rq tautologically
implies ppP ñ Rq _ pQñ Rqq. ˝

1.4.11 ¥ Exercise 1.2.4

Show that the following hold:

(a) Σ;α ( β iff Σ ( pαñ βq.

(b) α () β iff ( pαô βq.

(Recall that Σ;α “ Σ Y tαu, the set Σ together with the one possibly new
member α.)

Proof.

(a) We prove each direction of the biconditional.

(ñ) Assume Σ;α ( β. Let v be a truth assignment for the sentence
symbols in Σ;α and β. Then if v satisfies every member of Σ and α, it must
also satisfy β. Denote v̄pΣq as the proposition that v satisfies every member of
Σ and consider the following truth table:

v̄pΣq v̄pαq v̄pβq v̄ppαñ βqq
T T T T
T T F F
T F T T
T F F T
F T T T
F T F F
F F T T
F F F T

The red row denotes a contradiction: it is not possible for v̄pΣq and v̄pαq to be
true but v̄pβq to be false. All remaining rows show that when v̄pΣq is true, so
is v̄ppαñ βqq. Thus Σ ( pαñ βq.
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(ð) Assume Σ ( pα ñ βq. Let v be a ¶ Truth Assignment for the
sentence symbols in Σ, α, and β. Then if v satisfies every member of Σ, it
must also satisfy pαñ βq. Denote v̄pΣq as the proposition that v satisfies every
member of Σ. By definition, v̄ppα ñ βqq “ T if and only if v̄pαq “ F or v̄pαq
and v̄pβq are both true. Thus the only situation in which both v̄pΣq “ T and
v̄pαq “ T corresponds to when v̄pβq “ T . Hence Σ;α ( β.

(b) We prove each direction of the biconditional.

(ñ) Suppose α () β. Let v be a ¶ Truth Assignment for the sentence
symbols in α and β. Consider the following truth table:

pα ô βq
T T T
T F F
F F T
F T F

The red rows indicate possibilites that cannot occur, for α ( β and β ( α by
hypothesis. Of the remaining rows, pαô βq is true. Hence ( pαô βq.

(ð) Assume ( pαñ βq. Let v be a ¶ Truth Assignment for the sentence
symbols in α and β. By definition, v̄ppαô βqq “ T if and only if v̄pαq “ v̄pβq.
Thus if v̄pαq is true, so must v̄pβq. That is, α ( β. Likewise, if v̄pβq is true, so
must v̄pαq. Therefore β ( α. Hence α () β.

˝

1.4.12 ¥ Exercise 1.2.5

Prove or refute each of the following assertions:

(a) If either Σ ( α or Σ ( β, then Σ ( pα_ βq.

(b) If Σ ( pα_ βq, then either Σ ( α or Σ ( β.

Ñ - Enderton.Logic.Chapter 1.exercise 1 2 5a

Ñ - Enderton.Logic.Chapter 1.exercise 1 2 5b

Proof.

(a) WLOG, suppose Σ ( α. That is, every truth assignment for sentence
symbols found in Σ and α that satisfies every member of Σ also satisfies α. Let
v be one of these truth assignments. Denote v̄pΣq as the proposition that v
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satisfies every member of Σ and consider the following truth table:

v̄pΣq v̄pαq v̄pβq v̄ppα_ βqq
T T T T
T T F T
T F T T
T F F T
F T T T
F T F T
F F T T
F F F F

The red rows indicate possiblities that cannot occur since Σ ( α by hypothesis.
All remaining rows show that when v̄pΣq is true, so is v̄ppα _ βqq. Hence Σ (
pα_ βq.

(b) We proceed by counterexample. Suppose Σ “ ∅. That is, assume pα_βq
is a tautology, i.e. ( pα_ βq. Consider the following truth table:

pα _ βq
T T T
T T F
F T T
F F F

The red row indicates an impossibility, since pα _ βq should always be true by
hypothesis. But this table also clearly demonstrates that * α and * β. Thus
the conditional statement proposed must not be generally true.

˝

1.4.13 ¥ Exercise 1.2.6a

Show that if v1 and v2 are ¶ Truth Assignments which agree on all the sentence
symbols in the wff α, then v̄1pαq “ v̄2pαq. Use the ¥ Induction Principle.

Proof. Let σ map a ¶ Well-Formed Formula ϕ to the set of sentence symbols
found in ϕ. Define

S “ tϕ | ppσpϕq “ σpαqq ñ pv̄1pϕq “ v̄2pϕqqqu. (1.8)

We prove that (i) the set of sentence symbols is found in ϕ and (ii) S is closed
under the five ¶ Formula-Building Operations. Afterward we show that (iii)
our theorem statement holds.

(i) Let An denote an arbitrary sentence symbol. Suppose σpAnq “ tAnu “

σpαq. But then v̄1pAnq “ v̄2pAnq since, by hypothesis, v1 and v2 agree on all
the sentence symbols found in α. Hence S contains all the sentence symbols.
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(ii) Let β, γ P S. There are three cases to consider:

Case 1 Suppose σpβq ‰ σpαq. By definition, E␣pβq “ p␣βq. Then clearly
σpE␣pβqq ‰ σpαq. Therefore E␣pβq P S. Likewise, E˝pβ, γq “ pβ ˝ γq where ˝

is one of the binary connectives ^, _, ñ, ô. Again, it clearly follows that
E˝pβ, γq ‰ σpαq. Thus E˝pβ, γq P S.

Case 2 Suppose σpγq ‰ σpαq. This case mirrors Case 1.

Case 3 Suppose σpβq “ σpαq “ σpαq. By definition, E␣pβq “ p␣βq. Then
clearly σpE␣pβqq “ σpαq. Since

v̄1pp␣βqq “ p␣v̄1pβqq

“ p␣v̄2pβqq (1.8)

“ v̄2pp␣βqq,

it follows that E␣pβq P S.
Likewise, E˝pβ, γq “ pβ ˝ γq where ˝ is one of the binary connectives ^, _,

ñ, ô. Again, it clearly follows that E˝pβ, γq ‰ σpαq. Since

v̄1ppα ˝βqq “ pv̄1pαq ˝ v̄1pβqq

“ pv̄2pαq ˝ v̄2pβq (1.8)

“ v̄2ppα ˝βqq,

it follows that E˝pβ, γq P S.

Subconclusion The above three cases are exhaustive. Thus it follows S
is closed under the five formula-buildiong operations.

(iii) By (i) and (ii), the ¥ Induction Principle indicates S is the set of all
wffs. Since α is a well-formed formula, it follows α P S. Therefore

ppσpαq “ σpαqq ñ v̄1pαq “ v̄2pαqq.

The antecedent clearly holds true. Hence v̄1pαq “ v̄2pαq as expected.
˝

1.4.14 ¥ Exercise 1.2.6b

Let S be a set of sentence symbols that includes those in Σ and τ (and possibly
more). Show that Σ ( τ iff every truth assignment for S which satisfies every
member of Σ also satisfies τ . (This is an easy consequence of part (a). The
point of part (b) is that we do not need to worry about getting the domain of
a truth assignment exactly perfect, as long as it is big enough. For example,
one option would be always to use truth assignments on the set of all sentence
symbols. The drawback is that these are infinite objects, and there are a great
many – uncountably many – of them.)
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Proof. Let S be a set of sentence symbols that includes those in Σ and τ (and
possibly more). Let S 1 Ď S be the set containing precisely the sentence symbols
found in Σ and τ .

Let v be a truth assignment for S1 that satisfies every member of Σ and w
be an arbitrary extension of v for S. By construction, v and w agree on all
the sentence symbols found in both Σ and τ . ¥ Exercise 1.2.6a then implies
v̄pτq “ w̄pτq and v̄pσq “ w̄pσq for all σ P Σ. Thus v satisfies every member of Σ
if and only if w satisfies every member of Σ. Likewise, v satisfies τ if and only
if w satisfies τ .

Hence, by definition of ¶ Tautological Implication, Σ ( τ if and only if every
truth assignment for the sentence symbols in S1 that satisfies every member of
Σ also satisfies τ if and only if every truth assignment for the sentence symbols
in S that satisfies every member of Σ also satisfies τ .

˝

1.4.15 ¥ Exercise 1.2.7

You are in a land inhabited by people who either always tell the truth or always
tell falsehoods. You come to a fork in the road and you need to know which
fork leads to the capital. There is a local resident there, but he has time only
to reply to one yes-or-no question. What one question should you ask so as to
learn which fork to take? Suggestion: Make a table.

Proof. Consider the self-referential question, ”Would you respond ’yes’ to the
question, ’Should I take the left road to get to the capital?’” Let I denote
whether the inhabitant is truthful, and L denote whether the left road actually
goes to the capital. We have R denote the answer given by the inhabitant in
the following ”truth table”:

I L R
T T Yes
T F No
F T Yes
F F No

Regardless of the inhabitant’s honesty, we receive the answer ”Yes” if and only
if the left road actually goes to the capital. ˝

1.4.16 ¥ Exercise 1.2.8

(Substitution) Consider a sequence α1, α2, . . . of wffs. For each wff ϕ let ϕ˚ be
the result of replacing the sentence symbol An by αn for each n.

¥ Exercise 1.2.8a

Let v be a truth assignment for the set of all sentence symbols; define u to be
the truth assignment for which upAnq “ v̄pαnq. Show that ūpϕq “ v̄pϕ˚q. Use
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the ¥ Induction Principle.

Proof. Let
S “ tϕ | ϕ is a wff such that ūpϕq “ v̄pϕ˚qu.

We prove that (i) S contains the set of all sentence symbols and (ii) S is closed
under the five ¶ Formula-Building Operations. Afterward we prove that (iii)
our theorem statement holds.

(i) Let ϕ “ An be an arbitrary sentence symbol. By definition, upAnq “ v̄pαnq.
Then

ūpϕq “ ūpAnq “ upAnq “ v̄pαnq “ v̄pϕ˚q.

Hence every sentence symbol is in S.

(ii) Let β, γ P S. That is, ūpβq “ v̄pβ˚q and ūpγq “ v̄pγ˚q. By definition,
E␣pβq “ p␣βq. Therefore

ūpE␣pβqq “ p␣ūpβqq
“ p␣v̄pβ˚qq

“ v̄pp␣β˚qq

“ v̄pp␣βq˚q

“ v̄pE␣pβq˚q.

Likewise, E˝pβ, γq “ pβ ˝ γq where ˝ is one of the binary connectives ^, _, ñ,
ô. Therefore

ūpE˝pβ, γqq “ ūpβq ˝ ūpγq

“ v̄pβ˚q ˝ v̄pγ˚q

“ v̄ppβ˚ ˝ γ˚qq

“ v̄ppβ ˝ γq˚q

“ v̄pE˝pβ, γq
˚q.

Hence S is closed under the five formula-building operations.

(iii) By (i) and (ii), the ¥ Induction Principle implies S is the set of all wffs.
Thus for any well-formed formula ϕ, ūpϕq “ v̄pϕ˚q.

˝

¥ Exercise 1.2.8b

Show that if ϕ is a tautology, then so is ϕ˚. (For example, one of our selected
tautologies is ppA^Bq ô pB^Aqq. From this we can conclude, by substitution,
that ppα^ βq ô pβ ^ αqq is a tautology, for any wffs α and β.)
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Proof. Suppose ϕ is a tautology and let S be the set of all sentence symbols.
Let v be a truth assignment for S and define u to be the truth assignment
for which upAnq “ v̄pαnq. By ¥ Exercise 1.2.8a, ūpϕq “ v̄pϕ˚q. Since ϕ is a
tautology, ūpϕq is true meaning v̄pϕ˚q is also true. Since v is an arbitrary truth
assignment, it follows that every truth assignment for S satisfies ϕ˚. By ¥
Exercise 1.2.6b, ( ϕ˚, i.e. ϕ˚ is a tautology. ˝

1.4.17 ¥ Exercise 1.2.9

(Duality) Let α be a wff whose only connective symbols are ^, _, and ␣. Let
α˚ be the result of interchanging ^ and _ and replacing each sentence symbol
by its negation. Show that α˚ is tautologically equivalent to p␣αq. Use the ¥
Induction Principle.

Ñ - not and de morgan

Ñ - not or de morgan

Proof. Let

S “ tα |α is a wff containing a ñ or

α is a wff containing a ô or

α˚ () p␣αqu.

We prove that (i) S contains the set of all sentence symbols and (ii) S is closed
under the five ¶ Formula-Building Operations. Afterward we prove that (iii)
our theorem statement holds.

(i) Let α “ An be an arbitrary sentence symbol. By definition,

α˚ “ A˚n “ p␣Anq “ p␣αq.

Hence every sentence symbol is in S.

(ii) Let α, β P S. Suppose α contains a ñ or ô symbol. Then E␣pαq also
does. The same holds for β. Furthermore, if either α or β contains a ñ or ô
symbol, then so does E˝pα, βq where ˝ is one of the binary connectives ^, _,
ñ, ô. In any of these above cases, it is trivial to see each of the five-formula
building operations take a wff from S and produce another wff in S.

Now, suppose neither α nor β contain a ñ or ô symbol. Then it must
be that α˚ () p␣αq and β˚ () p␣βq. Consider first E␣pαq “ p␣αq. By
definition,

E␣pαq˚ “ p␣α˚q () p␣p␣αqq “ p␣pE␣pαqqq.
Therefore E␣pαq P S.

Likewise, consider E˝pα, βq where ˝ is one of the binary connectives ^, _,
ñ, ô. It trivially follows that Eñpα, βq P S and Eôpα, βq P S. We cover the
remaining two cases in turn:
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Case 1 Suppose ˝ “ ^. Then

E^pα, βq˚ “ pα^ βq˚

“ pα˚ _ β˚q

() pp␣αq _ p␣βqq

() ␣pα^ βq

“ p␣pE^pα, βqqq,

where the last tautological equivalence follows from De Morgan’s laws.

Case 2 Suppose ˝ “ _. Then

E_pα, βq˚ “ pα_ βq˚

“ pα˚ ^ β˚q

() pp␣αq ^ p␣βqq

() ␣pα_ βq

“ p␣pE_pα, βqqq,

where the last tautological equivalence follows from De Morgan’s laws.

Subconclusion The foregoing analysis shows that S is indeed closed under
the five formula-building operations.

(iii) By (i) and (ii), the ¥ Induction Principle implies S is the set of all wffs.
Thus for any well-formed formula α whose only connective symbols are ^, _,
and ␣, α˚ () p␣αq.

˝

1.4.18 ¥ Exercise 1.2.10

Say that a set Σ1 of wffs is equivalent to a set Σ2 of wffs iff for any wff α, we have
Σ1 ( α iff Σ2 ( α. A set Σ is independent iff no member of Σ is tautologically
implied by the remaining members in Σ. Show that the following hold.

¥ Exercise 1.2.10a

A finite set of wffs has an independent equivalent subset.

Proof. For natural number n, let P pnq be the statement:

Induction Hypothesis (IH)

A set of wffs ¶ Equinumerous to n has an independent equivalent subset.

We proceed by induction on n.
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Base Case Consider a finite set of wffs equinumerous to 0. This is simply
the empty set. It is vacuously true that ∅ is independent. Thus ∅ Ď ∅ is an
independent equivalent subset meaning P p0q is true.

Inductive Step Suppose P pnq holds true for some n ě 0. That is, every finite
set of wffs equinumerous to n has an independent equivalent subset. Consider
now set Σ of wffs equinumerous to n`1. There are two possibilities to consider:

Case 1 Suppose Σ is independent. Then Σ Ď Σ is an independent equiv-
alent subset.

Case 2 Suppose Σ is not independent. Then there exists some σ P Σ
such that σ is tautologically implied by the remaining members of Σ. Let
Σ1 “ Σ´ tσu. By (IH), Σ1 has an independent equivalent subset Σ2.

Now let ϕ be an arbitrary wff. Then

Σ2 ( ϕñ Σ1 ( ϕ def’n of equivalent

ñ Σ1;σ ( ϕ σ is redundant

ñ Σ ( ϕ.

Likewise,

Σ ( ϕñ Σ1;σ ( ϕ

ñ Σ1 ( ϕ σ is redundant

ñ Σ2 ( ϕ. def’n of equivalent

Thus Σ2 is an independent equivalent subset of Σ.

Subconclusion The above two cases are exhaustive. Hence P pn`1q holds
true.

Conclusion By induction, it follows P pnq holds true for all n ě 0. That
is, every set of wffs equinumerous to a natural number has an independent
equivalent subset. In other words, every finite set of wffs has an independent
equivalent subset.

˝

¥ Exercise 1.2.10b

An infinite set need not have an independent equivalent subset.

Proof. Let
S “ tA1 ^ ¨ ¨ ¨ ^An | n P ωu

be an infinite set of wffs. For the sake of contradiction, suppose S has an
independent equivalent subset S1. There are two cases to consider:
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Case 1 Suppose S1 “ ∅. Then it trivally follows S1 is not equivalent to S, a
contradiction.

Case 1 Suppose S1 ‰ ∅. By the ¥ Well Ordering of ω, there exists a least
n P N such that ϕ “ A1 ^ ¨ ¨ ¨ ^ An is in S1. It cannot be that another element
of S1 exists since such an element would tautologically imply ϕ, contradicting
independence. Thus S1 “ tϕu. But tϕu cannot be equivalent to S since it has
no information about sentence symbol e.g. An`1, another contradiction.

Conclusion The above two cases are exhaustive and both yield contradic-
tions. It must be that S does not have an independent equivalent subset.

˝

1.4.19 ¥ Exercise 1.2.11

Show that a truth assignment v satisfies the wff

p¨ ¨ ¨ pA1 ô A2q ô ¨ ¨ ¨ ô Anq

iff vpAiq “ F for an even number of i’s, 1 ď i ď n. (By the associative law for
ô, the placement of the parentheses is not crucial.)

Proof. Define σn recursively as follows: σ0 “ pA1 ô A2q and σn`1 “ pσn ô

An`3q. For natural number n, let P pnq be the statement:

Induction Hypothesis (IH)

Truth assignment v satisfies σn if and only if vpAiq “ F for an even
number of i’s, 1 ď i ď n` 2.

We proceed by induction on n.

Base Case Let n “ 0. Then σn “ σ0 “ pA1 ô A2q. We proceed by truth
table:

pA1 ô A2q

T T T
T F F
F F T
F T F

Here we see A1 ô A2 is true if and only if both A1 and A2 are true or neither
A1 nor A2 are true. Thus P p0q holds true.

Inductive Step Suppose P pnq holds true for some n ě 0. Consider now

σn`1 “ pσk ô An`3q.

Let v be a truth assignment for A1, . . . , An`3. There are two cases to consider:
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Case 1 Suppose vpAiq “ F for an even number of i’s, 1 ď i ď n ` 2. By
(IH), v satisfies σn. We now have the following truth table:

pσn ô An`3q

T T T
T F F

In this case, it follows v satisfies σn`1 if and only if vpAiq “ F for an even
number of i’s, 1 ď i ď n` 3.

Case 2 Suppose vpAiq “ F for an odd number of i’s, 1 ď i ď n ` 2. By
(IH), v does not satisfy σn. We now have the following truth table:

pσn ô An`3q

F F T
F T F

In this case, it follows v satisfies σn`1 if and only if vpAiq “ F for an even
number of i’s, 1 ď i ď n` 3.

Subconclusion The above two cases are exhaustive. Hence P pn`1q holds
true.

Conclusion By induction, it follows P pnq holds true for all n ě 0. That is,
truth assignment v satisfies

p¨ ¨ ¨ pA1 ô A2q ô ¨ ¨ ¨ ô Anq

if and only if vpAiq “ F for an even number of i’s, 1 ď i ď n.
˝

1.4.20 ¥ Exercise 1.2.12

There are three suspects for a murder: Adams, Brown, and Clark. Adams says
”I didn’t do it. The victim was an old acquaintance of Brown’s. But Clark
hated him.” Brown states ”I didn’t do it. I didn’t even know the guy. Besides
I was out of town all that week.” Clark says ”I didn’t do it. I saw both Adams
and Brown downtown with the victim that day; one of them must have done
it.” Assume that the two innocent men are telling the truth, but that the guilty
man might not be. Who did it?

Proof. It must be that Brown is the guilty one. Adam claims the victim was
an old acquaintance of Brown’s. Clark claims Brown was downtown with the
victim that day. Brown’s testimony conflicts with both of these statements. ˝
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1.4.21 ¥ Exercise 1.2.13

An advertisement for a tennis magazine states, ”If I’m not playing tennis, I’m
watching tennis. And if I’m not watching tennis, I’m reading about tennis.”
We can assume that the speaker cannot do more than one of these activities
at a time. What is the speaker doing? (Translate the given sentences into our
formal language; consider the possible truth assignments.)

Proof. Let P denote playing tennis, W denote watching tennis, and R denote
reading about tennis. These statements can be translated as:

(a) ␣P ñW .

(b) ␣W ñ R.

Thus either the speaker is playing tennis, or, if not, he is watching tennis. Since
we assume the speaker cannot do more than one of these activities at a time,
reading is never a possibility. ˝

1.4.22 - Exercise 1.2.14

Let S be the set of all sentence symbols, and assume that v : S Ñ tF, T u is a
truth assignment. Show there is at most one extension v̄ meeting conditions 0-5
listed at the beginning of this section. (Suppose that v̄1 and v̄2 are both such
extensions. Use the ¥ Induction Principle to show that v̄1 “ v̄2.

Proof. The conditions 0-5 can be found at ¶ Truth Assignment. TODO ˝

1.4.23 ¥ Exercise 1.2.15

Of the following three formulas, which tautologically implies which?

(a) pAô Bq

(b) p␣ppAñ Bq ñ p␣pB ñ Aqqqq

(c) ppp␣Aq _Bq ^ pA_ p␣Bqqq

Ñ - Enderton.Logic.Chapter 1.exercise 1 2 15 i

Ñ - Enderton.Logic.Chapter 1.exercise 1 2 15 ii

Proof. All three are tautologically equivalent. We prove that (i) (a) is tauto-
logically equivalent to (b) and (ii) (a) is tautologically equivalent to (c). It then
immediately follows that (b) is tautologically equivalent to (c).
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(i) By ¥ Exercise 1.2.4, paq () pbq if and only if ( ppaq ô pbqq. We now
construct the corresponding truth table:

pA ô Bq ô p␣ ppA ñ Bq ñ p␣ pB ñ Aqqqq
T T T T T T T T F F T T T
T F F T F T F F T F F T T
F F T T F F T T T T T F F
F T F T T F T F F F F T F

Therefore (a) and (b) are tautologically equivalent.

(ii) By ¥ Exercise 1.2.4, paq () pcq if and only if ( ppaq ô pcqq. We now
construct the corresponding truth table:

pA ô Bq ô ppp␣ Aq _ Bq ^ pA _ p␣ Bqqq
T T T T F T T T T T T F T
T F F T F T F F F T T T F
F F T T T F T T F F F F T
F T F T T F T F T F T T F

˝

1.4.24 - Exercise 1.3.1

Rewrite the tautologies in the ”selected list” at the end of Section 1.2, but using
the conventions of the present section to minimize the number of parentheses.

Answer. TODO ˝

1.4.25 - Exercise 1.3.2

Give an example of wffs α and β and expressions γ and δ such that pα ^ βq “
pγ ^ δq but α ‰ γ.

Answer. TODO ˝

1.4.26 - Exercise 1.3.3

Carry out the argument for - Lemma 13B for the case of the operation E␣.

Answer. TODO ˝
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1.4.27 - Exercise 1.3.4

Suppose that we modify our definition of wff by omitting all right parentheses.
Thus instead of

ppA^ p␣Bqq ñ pC _Dqq

we use
ppA^ p␣B ñ pC ^D.

Show that we still have unique readability (i.e., each wff still has only one
possible decomposition). Suggestion: These expressions have the same number
of parentheses as connective symbols.

Answer. TODO ˝

1.4.28 - Exercise 1.3.5

The English language has a tendency to use two-part connectives: ”both . . . and
. . .” ”either . . . or . . .” ”if . . ., then . . ..” How does this affect unique readability
in English?

Answer. TODO ˝

1.4.29 - Exercise 1.3.6

We have given an algorithm for analyzing a wff by constructing its tree from
the top down. There are also ways of constructing the tree from the bottom
up. This can be done by looking through the formula for innermost pairs of
parentheses. Give a complete description of an algorithm of this sort.

Answer. TODO ˝

1.4.30 - Exercise 1.3.7

Suppose that left and right parentheses are indistinguishable. Thus, instead of
α_pβ^γqq we have |α_|β^γ||. Do formulas still have unique decomposition?

Answer. TODO ˝
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