Enderton.Logic.Chapter_1 #
Sentential Logic
An abstract representation of a well-formed formula as defined by Enderton.
- SS: ℕ → Enderton.Logic.Chapter_1.Wff
- Not: Enderton.Logic.Chapter_1.Wff → Enderton.Logic.Chapter_1.Wff
- And: Enderton.Logic.Chapter_1.Wff → Enderton.Logic.Chapter_1.Wff → Enderton.Logic.Chapter_1.Wff
- Or: Enderton.Logic.Chapter_1.Wff → Enderton.Logic.Chapter_1.Wff → Enderton.Logic.Chapter_1.Wff
- Cond: Enderton.Logic.Chapter_1.Wff → Enderton.Logic.Chapter_1.Wff → Enderton.Logic.Chapter_1.Wff
- Iff: Enderton.Logic.Chapter_1.Wff → Enderton.Logic.Chapter_1.Wff → Enderton.Logic.Chapter_1.Wff
Instances For
Returns the length of the expression, i.e. a count of all symbols..
Equations
- Enderton.Logic.Chapter_1.Wff.length (Enderton.Logic.Chapter_1.Wff.SS a) = 1
- Enderton.Logic.Chapter_1.Wff.length (Enderton.Logic.Chapter_1.Wff.Not e) = Enderton.Logic.Chapter_1.Wff.length e + 3
- Enderton.Logic.Chapter_1.Wff.length (Enderton.Logic.Chapter_1.Wff.And e₁ e₂) = Enderton.Logic.Chapter_1.Wff.length e₁ + Enderton.Logic.Chapter_1.Wff.length e₂ + 3
- Enderton.Logic.Chapter_1.Wff.length (Enderton.Logic.Chapter_1.Wff.Or e₁ e₂) = Enderton.Logic.Chapter_1.Wff.length e₁ + Enderton.Logic.Chapter_1.Wff.length e₂ + 3
- Enderton.Logic.Chapter_1.Wff.length (Enderton.Logic.Chapter_1.Wff.Cond e₁ e₂) = Enderton.Logic.Chapter_1.Wff.length e₁ + Enderton.Logic.Chapter_1.Wff.length e₂ + 3
- Enderton.Logic.Chapter_1.Wff.length (Enderton.Logic.Chapter_1.Wff.Iff e₁ e₂) = Enderton.Logic.Chapter_1.Wff.length e₁ + Enderton.Logic.Chapter_1.Wff.length e₂ + 3
Instances For
Every Wff
has a positive length.
The number of sentence symbols found in the provided Wff
.
Equations
- One or more equations did not get rendered due to their size.
- Enderton.Logic.Chapter_1.Wff.sentenceSymbolCount (Enderton.Logic.Chapter_1.Wff.SS a) = 1
- Enderton.Logic.Chapter_1.Wff.sentenceSymbolCount (Enderton.Logic.Chapter_1.Wff.Not e) = Enderton.Logic.Chapter_1.Wff.sentenceSymbolCount e
- Enderton.Logic.Chapter_1.Wff.sentenceSymbolCount (Enderton.Logic.Chapter_1.Wff.And e₁ e₂) = Enderton.Logic.Chapter_1.Wff.sentenceSymbolCount e₁ + Enderton.Logic.Chapter_1.Wff.sentenceSymbolCount e₂
- Enderton.Logic.Chapter_1.Wff.sentenceSymbolCount (Enderton.Logic.Chapter_1.Wff.Or e₁ e₂) = Enderton.Logic.Chapter_1.Wff.sentenceSymbolCount e₁ + Enderton.Logic.Chapter_1.Wff.sentenceSymbolCount e₂
- Enderton.Logic.Chapter_1.Wff.sentenceSymbolCount (Enderton.Logic.Chapter_1.Wff.Iff e₁ e₂) = Enderton.Logic.Chapter_1.Wff.sentenceSymbolCount e₁ + Enderton.Logic.Chapter_1.Wff.sentenceSymbolCount e₂
Instances For
The number of sentential connective symbols found in the provided Wff
.
Equations
- One or more equations did not get rendered due to their size.
- Enderton.Logic.Chapter_1.Wff.sententialSymbolCount (Enderton.Logic.Chapter_1.Wff.SS a) = 0
- Enderton.Logic.Chapter_1.Wff.sententialSymbolCount (Enderton.Logic.Chapter_1.Wff.Not e) = Enderton.Logic.Chapter_1.Wff.sententialSymbolCount e + 1
Instances For
The number of binary connective symbols found in the provided Wff
.
Equations
- Enderton.Logic.Chapter_1.Wff.binarySymbolCount (Enderton.Logic.Chapter_1.Wff.SS a) = 0
- Enderton.Logic.Chapter_1.Wff.binarySymbolCount (Enderton.Logic.Chapter_1.Wff.Not e) = Enderton.Logic.Chapter_1.Wff.binarySymbolCount e
- Enderton.Logic.Chapter_1.Wff.binarySymbolCount (Enderton.Logic.Chapter_1.Wff.And e₁ e₂) = Enderton.Logic.Chapter_1.Wff.binarySymbolCount e₁ + Enderton.Logic.Chapter_1.Wff.binarySymbolCount e₂ + 1
- Enderton.Logic.Chapter_1.Wff.binarySymbolCount (Enderton.Logic.Chapter_1.Wff.Or e₁ e₂) = Enderton.Logic.Chapter_1.Wff.binarySymbolCount e₁ + Enderton.Logic.Chapter_1.Wff.binarySymbolCount e₂ + 1
- Enderton.Logic.Chapter_1.Wff.binarySymbolCount (Enderton.Logic.Chapter_1.Wff.Cond e₁ e₂) = Enderton.Logic.Chapter_1.Wff.binarySymbolCount e₁ + Enderton.Logic.Chapter_1.Wff.binarySymbolCount e₂ + 1
- Enderton.Logic.Chapter_1.Wff.binarySymbolCount (Enderton.Logic.Chapter_1.Wff.Iff e₁ e₂) = Enderton.Logic.Chapter_1.Wff.binarySymbolCount e₁ + Enderton.Logic.Chapter_1.Wff.binarySymbolCount e₂ + 1
Instances For
The number of parentheses found in the provided Wff
.
Equations
- Enderton.Logic.Chapter_1.Wff.parenCount (Enderton.Logic.Chapter_1.Wff.SS a) = 0
- Enderton.Logic.Chapter_1.Wff.parenCount (Enderton.Logic.Chapter_1.Wff.Not e) = 2 + Enderton.Logic.Chapter_1.Wff.parenCount e
- Enderton.Logic.Chapter_1.Wff.parenCount (Enderton.Logic.Chapter_1.Wff.And e₁ e₂) = 2 + Enderton.Logic.Chapter_1.Wff.parenCount e₁ + Enderton.Logic.Chapter_1.Wff.parenCount e₂
- Enderton.Logic.Chapter_1.Wff.parenCount (Enderton.Logic.Chapter_1.Wff.Or e₁ e₂) = 2 + Enderton.Logic.Chapter_1.Wff.parenCount e₁ + Enderton.Logic.Chapter_1.Wff.parenCount e₂
- Enderton.Logic.Chapter_1.Wff.parenCount (Enderton.Logic.Chapter_1.Wff.Cond e₁ e₂) = 2 + Enderton.Logic.Chapter_1.Wff.parenCount e₁ + Enderton.Logic.Chapter_1.Wff.parenCount e₂
- Enderton.Logic.Chapter_1.Wff.parenCount (Enderton.Logic.Chapter_1.Wff.Iff e₁ e₂) = 2 + Enderton.Logic.Chapter_1.Wff.parenCount e₁ + Enderton.Logic.Chapter_1.Wff.parenCount e₂
Instances For
Whether or not the Wff
contains a ¬
.
Equations
- Enderton.Logic.Chapter_1.Wff.hasNotSymbol (Enderton.Logic.Chapter_1.Wff.SS a) = False
- Enderton.Logic.Chapter_1.Wff.hasNotSymbol (Enderton.Logic.Chapter_1.Wff.Not e) = True
- Enderton.Logic.Chapter_1.Wff.hasNotSymbol (Enderton.Logic.Chapter_1.Wff.And e₁ e₂) = (Enderton.Logic.Chapter_1.Wff.hasNotSymbol e₁ ∨ Enderton.Logic.Chapter_1.Wff.hasNotSymbol e₂)
- Enderton.Logic.Chapter_1.Wff.hasNotSymbol (Enderton.Logic.Chapter_1.Wff.Or e₁ e₂) = (Enderton.Logic.Chapter_1.Wff.hasNotSymbol e₁ ∨ Enderton.Logic.Chapter_1.Wff.hasNotSymbol e₂)
- Enderton.Logic.Chapter_1.Wff.hasNotSymbol (Enderton.Logic.Chapter_1.Wff.Cond e₁ e₂) = (Enderton.Logic.Chapter_1.Wff.hasNotSymbol e₁ ∨ Enderton.Logic.Chapter_1.Wff.hasNotSymbol e₂)
- Enderton.Logic.Chapter_1.Wff.hasNotSymbol (Enderton.Logic.Chapter_1.Wff.Iff e₁ e₂) = (Enderton.Logic.Chapter_1.Wff.hasNotSymbol e₁ ∨ Enderton.Logic.Chapter_1.Wff.hasNotSymbol e₂)
Instances For
If a Wff
does not contain the ¬
symbol, it has the same number of sentential
connective symbols as it does binary connective symbols. In other words, the
negation symbol is the only non-binary sentential connective.
Parentheses Count #
Let φ
be a well-formed formula and c
be the number of places at which a
sentential connective symbol exists. Then there is 2c
parentheses in φ
.
The length of a Wff
corresponds to the summation of sentence symbols,
sentential connective symbols, and parentheses.
Exercise 1.1.2 #
Show that there are no wffs of length 2
, 3
, or 6
, but that any other
positive length is possible.
Exercise 1.1.3 #
Let α
be a wff; let c
be the number of places at which binary connective
symbols (∧
, ∨
, →
, ↔
) occur in α
; let s
be the number of places at
which sentence symbols occur in α
. (For example, if α
is (A → (¬ A))
then
c = 1
and s = 2
.) Show by using the induction principle that s = c + 1
.
Exercise 1.1.5 (a) #
Suppose that α
is a wff not containing the negation symbol ¬
. Show that the
length of α
(i.e., the number of symbols in the string) is odd.
Suggestion: Apply induction to show that the length is of the form 4k + 1
.
Exercise 1.1.5 (b) #
Suppose that α
is a wff not containing the negation symbol ¬
. Show that more
than a quarter of the symbols are sentence symbols.
Suggestion: Apply induction to show that the number of sentence symbols is
k + 1
.
Exercise 1.2.1 #
Show that neither of the following two formulas tautologically implies the other:
(A ↔ (B ↔ C))
((A ∧ (B ∧ C)) ∨ ((¬ A) ∧ ((¬ B) ∧ (¬ C)))).
Suggestion: Only two truth assignments are needed, not eight.
Exercise 1.2.2 (a) #
Is (((P → Q) → P) → P)
a tautology?
Exercise 1.2.2 (b) #
Define σₖ
recursively as follows: σ₀ = (P → Q)
and σₖ₊₁ = (σₖ → P)
. For
which values of k
is σₖ
a tautology? (Part (a) corresponds to k = 2
.)
Exercise 1.2.5 #
Prove or refute each of the following assertions:
(a) If either Σ ⊨ α
or Σ ⊨ β
, then Σ ⊨ (α ∨ β)
.
(b) If Σ ⊨ (α ∨ β)
, then either Σ ⊨ α
or Σ ⊨ β
.
Exercise 1.2.15 #
Of the following three formulas, which tautologically implies which?
(a) (A ↔ B)
(b) (¬((A → B) →(¬(B → A))))
(c) (((¬ A) ∨ B) ∧ (A ∨ (¬ B)))