Documentation

Common.Set.Intervals

Common.Set.Intervals #

Additional theorems around intervals.

theorem Set.Iio_nat_lt_ssubset {m : } {n : } (h : m < n) :

If m < n then {0, …, m - 1} ⊂ {0, …, n - 1}.

theorem Set.SurjOn_emptyset_Iio_iff_eq_zero {α : Type u_1} {n : } {f : α} :

It is never the case that the emptyset is surjective