Documentation

Mathlib.Algebra.GroupPower.CovariantClass

Lemmas about the interaction of power operations with order in terms of CovariantClass #

More lemmas with bundled algebra+order typeclasses are in Algebra/GroupPower/Order.lean and Algebra/GroupPower/Lemmas.lean.

theorem nsmul_le_nsmul_of_le_right {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {a : M} {b : M} (hab : a b) (i : ) :
i a i b
abbrev nsmul_le_nsmul_of_le_right.match_1 (motive : Prop) :
∀ (x : ), (Unitmotive 0)(∀ (k : ), motive (Nat.succ k))motive x
Equations
  • (_ : motive x) = (_ : motive x)
Instances For
    theorem pow_le_pow_of_le_left' {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {a : M} {b : M} (hab : a b) (i : ) :
    a ^ i b ^ i
    theorem nsmul_nonneg {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {a : M} (H : 0 a) (n : ) :
    0 n a
    theorem one_le_pow_of_one_le' {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {a : M} (H : 1 a) (n : ) :
    1 a ^ n
    theorem nsmul_nonpos {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {a : M} (H : a 0) (n : ) :
    n a 0
    theorem pow_le_one' {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {a : M} (H : a 1) (n : ) :
    a ^ n 1
    theorem nsmul_le_nsmul {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {a : M} {n : } {m : } (ha : 0 a) (h : n m) :
    n a m a
    abbrev nsmul_le_nsmul.match_1 {n : } {m : } (motive : (∃ (k : ), n + k = m)Prop) :
    ∀ (x : ∃ (k : ), n + k = m), (∀ (k : ) (hk : n + k = m), motive (_ : ∃ (k : ), n + k = m))motive x
    Equations
    • (_ : motive x) = (_ : motive x)
    Instances For
      theorem pow_le_pow' {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {a : M} {n : } {m : } (ha : 1 a) (h : n m) :
      a ^ n a ^ m
      theorem nsmul_le_nsmul_of_nonpos {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {a : M} {n : } {m : } (ha : a 0) (h : n m) :
      m a n a
      theorem pow_le_pow_of_le_one' {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {a : M} {n : } {m : } (ha : a 1) (h : n m) :
      a ^ m a ^ n
      theorem nsmul_pos {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {a : M} (ha : 0 < a) {k : } (hk : k 0) :
      0 < k a
      theorem one_lt_pow' {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {a : M} (ha : 1 < a) {k : } (hk : k 0) :
      1 < a ^ k
      theorem nsmul_neg {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {a : M} (ha : a < 0) {k : } (hk : k 0) :
      k a < 0
      theorem pow_lt_one' {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {a : M} (ha : a < 1) {k : } (hk : k 0) :
      a ^ k < 1
      theorem nsmul_lt_nsmul {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] {a : M} {n : } {m : } (ha : 0 < a) (h : n < m) :
      n a < m a
      theorem pow_lt_pow' {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] {a : M} {n : } {m : } (ha : 1 < a) (h : n < m) :
      a ^ n < a ^ m
      theorem nsmul_strictMono_right {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] {a : M} (ha : 0 < a) :
      StrictMono ((fun (x : M) (x_1 : ) => x_1 x) a)
      theorem pow_strictMono_left {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] {a : M} (ha : 1 < a) :
      StrictMono ((fun (x : M) (x_1 : ) => x ^ x_1) a)
      theorem Left.pow_nonneg {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {x : M} (hx : 0 x) {n : } :
      0 n x
      theorem Left.one_le_pow_of_le {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {x : M} (hx : 1 x) {n : } :
      1 x ^ n
      theorem Left.pow_nonpos {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {x : M} (hx : x 0) {n : } :
      n x 0
      theorem Left.pow_le_one_of_le {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {x : M} (hx : x 1) {n : } :
      x ^ n 1
      theorem Right.pow_nonneg {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (Function.swap fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {x : M} (hx : 0 x) {n : } :
      0 n x
      theorem Right.one_le_pow_of_le {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (Function.swap fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {x : M} (hx : 1 x) {n : } :
      1 x ^ n
      theorem Right.pow_nonpos {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (Function.swap fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {x : M} (hx : x 0) {n : } :
      n x 0
      theorem Right.pow_le_one_of_le {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (Function.swap fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {x : M} (hx : x 1) {n : } :
      x ^ n 1
      theorem StrictMono.nsmul_left {β : Type u_1} {M : Type u_3} [AddMonoid M] [Preorder M] [Preorder β] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] {f : βM} (hf : StrictMono f) {n : } :
      n 0StrictMono fun (a : β) => n f a
      abbrev StrictMono.nsmul_left.match_1 (motive : (x : ) → x 0Prop) :
      ∀ (x : ) (x_1 : x 0), (∀ (hn : 0 0), motive 0 hn)(∀ (x : 1 0), motive 1 x)(∀ (n : ) (x : Nat.succ (Nat.succ n) 0), motive (Nat.succ (Nat.succ n)) x)motive x x_1
      Equations
      • (_ : motive x✝ x) = (_ : motive x✝ x)
      Instances For
        theorem StrictMono.pow_right' {β : Type u_1} {M : Type u_3} [Monoid M] [Preorder M] [Preorder β] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] {f : βM} (hf : StrictMono f) {n : } :
        n 0StrictMono fun (a : β) => f a ^ n
        theorem nsmul_strictMono_left {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] {n : } (hn : n 0) :
        StrictMono fun (a : M) => n a
        theorem pow_strictMono_right' {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] {n : } (hn : n 0) :
        StrictMono fun (a : M) => a ^ n

        See also pow_strictMono_right

        theorem Monotone.nsmul_left {β : Type u_1} {M : Type u_3} [AddMonoid M] [Preorder M] [Preorder β] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {f : βM} (hf : Monotone f) (n : ) :
        Monotone fun (a : β) => n f a
        theorem Monotone.pow_right {β : Type u_1} {M : Type u_3} [Monoid M] [Preorder M] [Preorder β] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {f : βM} (hf : Monotone f) (n : ) :
        Monotone fun (a : β) => f a ^ n
        theorem nsmul_mono_left {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] (n : ) :
        Monotone fun (a : M) => n a
        theorem pow_mono_right {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] (n : ) :
        Monotone fun (a : M) => a ^ n
        theorem Left.pow_neg {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] {n : } {x : M} (hn : 0 < n) (h : x < 0) :
        n x < 0
        theorem Left.pow_lt_one_of_lt {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] {n : } {x : M} (hn : 0 < n) (h : x < 1) :
        x ^ n < 1
        theorem Right.pow_neg {M : Type u_3} [AddMonoid M] [Preorder M] [CovariantClass M M (Function.swap fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] {n : } {x : M} (hn : 0 < n) (h : x < 0) :
        n x < 0
        theorem Right.pow_lt_one_of_lt {M : Type u_3} [Monoid M] [Preorder M] [CovariantClass M M (Function.swap fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] {n : } {x : M} (hn : 0 < n) (h : x < 1) :
        x ^ n < 1
        theorem nsmul_nonneg_iff {M : Type u_3} [AddMonoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {x : M} {n : } (hn : n 0) :
        0 n x 0 x
        theorem one_le_pow_iff {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {x : M} {n : } (hn : n 0) :
        1 x ^ n 1 x
        theorem nsmul_nonpos_iff {M : Type u_3} [AddMonoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {x : M} {n : } (hn : n 0) :
        n x 0 x 0
        theorem pow_le_one_iff {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {x : M} {n : } (hn : n 0) :
        x ^ n 1 x 1
        theorem nsmul_pos_iff {M : Type u_3} [AddMonoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {x : M} {n : } (hn : n 0) :
        0 < n x 0 < x
        theorem one_lt_pow_iff {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {x : M} {n : } (hn : n 0) :
        1 < x ^ n 1 < x
        theorem nsmul_neg_iff {M : Type u_3} [AddMonoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {x : M} {n : } (hn : n 0) :
        n x < 0 x < 0
        theorem pow_lt_one_iff {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {x : M} {n : } (hn : n 0) :
        x ^ n < 1 x < 1
        theorem nsmul_eq_zero_iff {M : Type u_3} [AddMonoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {x : M} {n : } (hn : n 0) :
        n x = 0 x = 0
        theorem pow_eq_one_iff {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {x : M} {n : } (hn : n 0) :
        x ^ n = 1 x = 1
        theorem nsmul_le_nsmul_iff {M : Type u_3} [AddMonoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] {a : M} {m : } {n : } (ha : 0 < a) :
        m a n a m n
        theorem pow_le_pow_iff' {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] {a : M} {m : } {n : } (ha : 1 < a) :
        a ^ m a ^ n m n
        theorem nsmul_lt_nsmul_iff {M : Type u_3} [AddMonoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] {a : M} {m : } {n : } (ha : 0 < a) :
        m a < n a m < n
        theorem pow_lt_pow_iff' {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] {a : M} {m : } {n : } (ha : 1 < a) :
        a ^ m < a ^ n m < n
        theorem lt_of_nsmul_lt_nsmul {M : Type u_3} [AddMonoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {a : M} {b : M} (n : ) :
        n a < n ba < b
        theorem lt_of_pow_lt_pow' {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {a : M} {b : M} (n : ) :
        a ^ n < b ^ na < b
        theorem min_lt_of_add_lt_two_nsmul {M : Type u_3} [AddMonoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {a : M} {b : M} {c : M} (h : a + b < 2 c) :
        min a b < c
        theorem min_lt_of_mul_lt_sq {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {a : M} {b : M} {c : M} (h : a * b < c ^ 2) :
        min a b < c
        theorem lt_max_of_two_nsmul_lt_add {M : Type u_3} [AddMonoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x x_1] {a : M} {b : M} {c : M} (h : 2 a < b + c) :
        a < max b c
        theorem lt_max_of_sq_lt_mul {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x x_1] {a : M} {b : M} {c : M} (h : a ^ 2 < b * c) :
        a < max b c
        theorem le_of_nsmul_le_nsmul {M : Type u_3} [AddMonoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] {a : M} {b : M} {n : } (hn : n 0) :
        n a n ba b
        theorem le_of_pow_le_pow' {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] {a : M} {b : M} {n : } (hn : n 0) :
        a ^ n b ^ na b
        theorem min_le_of_add_le_two_nsmul {M : Type u_3} [AddMonoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] {a : M} {b : M} {c : M} (h : a + b 2 c) :
        min a b c
        theorem min_le_of_mul_le_sq {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] {a : M} {b : M} {c : M} (h : a * b c ^ 2) :
        min a b c
        theorem le_max_of_two_nsmul_le_add {M : Type u_3} [AddMonoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] {a : M} {b : M} {c : M} (h : 2 a b + c) :
        a max b c
        theorem le_max_of_sq_le_mul {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] [CovariantClass M M (Function.swap fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] {a : M} {b : M} {c : M} (h : a ^ 2 b * c) :
        a max b c
        theorem Left.nsmul_neg_iff {M : Type u_3} [AddMonoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] {n : } {x : M} (hn : 0 < n) :
        n x < 0 x < 0
        theorem Left.pow_lt_one_iff' {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] {n : } {x : M} (hn : 0 < n) :
        x ^ n < 1 x < 1
        theorem Left.pow_lt_one_iff {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] {n : } {x : M} (hn : 0 < n) :
        x ^ n < 1 x < 1
        theorem Right.nsmul_neg_iff {M : Type u_3} [AddMonoid M] [LinearOrder M] [CovariantClass M M (Function.swap fun (x x_1 : M) => x + x_1) fun (x x_1 : M) => x < x_1] {n : } {x : M} (hn : 0 < n) :
        n x < 0 x < 0
        theorem Right.pow_lt_one_iff {M : Type u_3} [Monoid M] [LinearOrder M] [CovariantClass M M (Function.swap fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x < x_1] {n : } {x : M} (hn : 0 < n) :
        x ^ n < 1 x < 1
        theorem zsmul_nonneg {G : Type u_2} [SubNegMonoid G] [Preorder G] [CovariantClass G G (fun (x x_1 : G) => x + x_1) fun (x x_1 : G) => x x_1] {x : G} (H : 0 x) {n : } (hn : 0 n) :
        0 n x
        theorem one_le_zpow {G : Type u_2} [DivInvMonoid G] [Preorder G] [CovariantClass G G (fun (x x_1 : G) => x * x_1) fun (x x_1 : G) => x x_1] {x : G} (H : 1 x) {n : } (hn : 0 n) :
        1 x ^ n