Lemmas about powers in ordered fields. #
Integer powers #
theorem
zpow_le_one_of_nonpos
{α : Type u_1}
[LinearOrderedSemifield α]
{a : α}
{n : ℤ}
(ha : 1 ≤ a)
(hn : n ≤ 0)
:
theorem
one_le_zpow_of_nonneg
{α : Type u_1}
[LinearOrderedSemifield α]
{a : α}
{n : ℤ}
(ha : 1 ≤ a)
(hn : 0 ≤ n)
:
theorem
Nat.zpow_ne_zero_of_pos
{α : Type u_1}
[LinearOrderedSemifield α]
{a : ℕ}
(h : 0 < a)
(n : ℤ)
:
theorem
zpow_strictMono
{α : Type u_1}
[LinearOrderedSemifield α]
{a : α}
(hx : 1 < a)
:
StrictMono ((fun (x : α) (x_1 : ℤ) => x ^ x_1) a)
theorem
zpow_strictAnti
{α : Type u_1}
[LinearOrderedSemifield α]
{a : α}
(h₀ : 0 < a)
(h₁ : a < 1)
:
StrictAnti ((fun (x : α) (x_1 : ℤ) => x ^ x_1) a)
@[simp]
theorem
div_pow_le
{α : Type u_1}
[LinearOrderedSemifield α]
{a : α}
{b : α}
(ha : 0 ≤ a)
(hb : 1 ≤ b)
(k : ℕ)
:
theorem
zpow_injective
{α : Type u_1}
[LinearOrderedSemifield α]
{a : α}
(h₀ : 0 < a)
(h₁ : a ≠ 1)
:
Function.Injective ((fun (x : α) (x_1 : ℤ) => x ^ x_1) a)
Lemmas about powers to numerals. #
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Even.zpow_pos
{α : Type u_1}
[LinearOrderedField α]
{a : α}
{n : ℤ}
(hn : Even n)
(h : n ≠ 0)
:
Alias of the reverse direction of Even.zpow_pos_iff
.
Alias of the reverse direction of Odd.zpow_neg_iff
.
Alias of the reverse direction of Odd.zpow_nonpos_iff
.
@[simp]
Miscellaneous lemmmas #
For any a > 1
and a natural n
we have n ≤ a ^ n / (a - 1)
. See also
Nat.cast_le_pow_sub_div_sub
for a stronger inequality with a ^ n - 1
in the numerator.