Documentation
Mathlib
.
Algebra
.
Order
.
Ring
.
Abs
Search
Google site search
Mathlib
.
Algebra
.
Order
.
Ring
.
Abs
source
Imports
Init
Mathlib.Algebra.Order.Group.Abs
Mathlib.Algebra.Order.Ring.Defs
Mathlib.Algebra.Ring.Divisibility.Basic
Imported by
abs_one
abs_two
abs_mul
absHom
abs_mul_abs_self
abs_mul_self
abs_eq_iff_mul_self_eq
abs_lt_iff_mul_self_lt
abs_le_iff_mul_self_le
abs_le_one_iff_mul_self_le_one
abs_sub_sq
abs_dvd
abs_dvd_self
dvd_abs
self_dvd_abs
abs_dvd_abs
Absolute values in linear ordered rings.
#
source
@[simp]
theorem
abs_one
{α :
Type
u_1}
[
LinearOrderedRing
α
]
:
|
1
|
=
1
source
@[simp]
theorem
abs_two
{α :
Type
u_1}
[
LinearOrderedRing
α
]
:
|
2
|
=
2
source
theorem
abs_mul
{α :
Type
u_1}
[
LinearOrderedRing
α
]
(a :
α
)
(b :
α
)
:
|
a
*
b
|
=
|
a
|
*
|
b
|
source
def
absHom
{α :
Type
u_1}
[
LinearOrderedRing
α
]
:
α
→*₀
α
abs
as a
MonoidWithZeroHom
.
Equations
absHom
=
{
toZeroHom
:=
{
toFun
:=
abs
,
map_zero'
:=
(_ :
|
0
|
=
0
)
}
,
map_one'
:=
(_ :
|
1
|
=
1
)
,
map_mul'
:=
(_ :
∀ (
a
b :
α
),
|
a
*
b
|
=
|
a
|
*
|
b
|
)
}
Instances For
source
@[simp]
theorem
abs_mul_abs_self
{α :
Type
u_1}
[
LinearOrderedRing
α
]
(a :
α
)
:
|
a
|
*
|
a
|
=
a
*
a
source
@[simp]
theorem
abs_mul_self
{α :
Type
u_1}
[
LinearOrderedRing
α
]
(a :
α
)
:
|
a
*
a
|
=
a
*
a
source
theorem
abs_eq_iff_mul_self_eq
{α :
Type
u_1}
[
LinearOrderedRing
α
]
{a :
α
}
{b :
α
}
:
|
a
|
=
|
b
|
↔
a
*
a
=
b
*
b
source
theorem
abs_lt_iff_mul_self_lt
{α :
Type
u_1}
[
LinearOrderedRing
α
]
{a :
α
}
{b :
α
}
:
|
a
|
<
|
b
|
↔
a
*
a
<
b
*
b
source
theorem
abs_le_iff_mul_self_le
{α :
Type
u_1}
[
LinearOrderedRing
α
]
{a :
α
}
{b :
α
}
:
|
a
|
≤
|
b
|
↔
a
*
a
≤
b
*
b
source
theorem
abs_le_one_iff_mul_self_le_one
{α :
Type
u_1}
[
LinearOrderedRing
α
]
{a :
α
}
:
|
a
|
≤
1
↔
a
*
a
≤
1
source
theorem
abs_sub_sq
{α :
Type
u_1}
[
LinearOrderedCommRing
α
]
(a :
α
)
(b :
α
)
:
|
a
-
b
|
*
|
a
-
b
|
=
a
*
a
+
b
*
b
-
(
1
+
1
)
*
a
*
b
source
@[simp]
theorem
abs_dvd
{α :
Type
u_1}
[
Ring
α
]
[
LinearOrder
α
]
(a :
α
)
(b :
α
)
:
|
a
|
∣
b
↔
a
∣
b
source
theorem
abs_dvd_self
{α :
Type
u_1}
[
Ring
α
]
[
LinearOrder
α
]
(a :
α
)
:
|
a
|
∣
a
source
@[simp]
theorem
dvd_abs
{α :
Type
u_1}
[
Ring
α
]
[
LinearOrder
α
]
(a :
α
)
(b :
α
)
:
a
∣
|
b
|
↔
a
∣
b
source
theorem
self_dvd_abs
{α :
Type
u_1}
[
Ring
α
]
[
LinearOrder
α
]
(a :
α
)
:
a
∣
|
a
|
source
theorem
abs_dvd_abs
{α :
Type
u_1}
[
Ring
α
]
[
LinearOrder
α
]
(a :
α
)
(b :
α
)
:
|
a
|
∣
|
b
|
↔
a
∣
b