Documentation

Mathlib.Data.Int.Cast.Lemmas

Cast of integers (additional theorems) #

This file proves additional properties about the canonical homomorphism from the integers into an additive group with a one (Int.cast), particularly results involving algebraic homomorphisms or the order structure on which were not available in the import dependencies of Data.Int.Cast.Basic.

Main declarations #

Coercion ℕ → ℤ as a RingHom.

Equations
Instances For
    theorem Int.coe_nat_pos {n : } :
    0 < n 0 < n
    theorem Int.coe_nat_succ_pos (n : ) :
    0 < (Nat.succ n)
    theorem Int.toNat_lt' {a : } {b : } (hb : b 0) :
    Int.toNat a < b a < b
    theorem Int.natMod_lt {a : } {b : } (hb : b 0) :
    Int.natMod a b < b
    @[simp]
    theorem Int.cast_ite {α : Type u_3} [AddGroupWithOne α] (P : Prop) [Decidable P] (m : ) (n : ) :
    (if P then m else n) = if P then m else n
    def Int.castAddHom (α : Type u_5) [AddGroupWithOne α] :

    coe : ℤ → α as an AddMonoidHom.

    Equations
    • Int.castAddHom α = { toZeroHom := { toFun := Int.cast, map_zero' := (_ : 0 = 0) }, map_add' := (_ : ∀ (m n : ), (m + n) = m + n) }
    Instances For
      @[simp]
      theorem Int.coe_castAddHom {α : Type u_3} [AddGroupWithOne α] :
      (Int.castAddHom α) = fun (x : ) => x
      def Int.castRingHom (α : Type u_5) [NonAssocRing α] :

      coe : ℤ → α as a RingHom.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem Int.coe_castRingHom {α : Type u_3} [NonAssocRing α] :
        (Int.castRingHom α) = fun (x : ) => x
        theorem Int.cast_commute {α : Type u_3} [NonAssocRing α] (m : ) (x : α) :
        Commute (m) x
        theorem Int.cast_comm {α : Type u_3} [NonAssocRing α] (m : ) (x : α) :
        m * x = x * m
        theorem Int.commute_cast {α : Type u_3} [NonAssocRing α] (x : α) (m : ) :
        Commute x m
        theorem Int.cast_mono {α : Type u_3} [OrderedRing α] :
        Monotone fun (x : ) => x
        @[simp]
        theorem Int.cast_nonneg {α : Type u_3} [OrderedRing α] [Nontrivial α] {n : } :
        0 n 0 n
        @[simp]
        theorem Int.cast_le {α : Type u_3} [OrderedRing α] [Nontrivial α] {m : } {n : } :
        m n m n
        theorem Int.cast_strictMono {α : Type u_3} [OrderedRing α] [Nontrivial α] :
        StrictMono fun (x : ) => x
        @[simp]
        theorem Int.cast_lt {α : Type u_3} [OrderedRing α] [Nontrivial α] {m : } {n : } :
        m < n m < n
        @[simp]
        theorem Int.cast_nonpos {α : Type u_3} [OrderedRing α] [Nontrivial α] {n : } :
        n 0 n 0
        @[simp]
        theorem Int.cast_pos {α : Type u_3} [OrderedRing α] [Nontrivial α] {n : } :
        0 < n 0 < n
        @[simp]
        theorem Int.cast_lt_zero {α : Type u_3} [OrderedRing α] [Nontrivial α] {n : } :
        n < 0 n < 0
        @[simp]
        theorem Int.cast_min {α : Type u_3} [LinearOrderedRing α] {a : } {b : } :
        (min a b) = min a b
        @[simp]
        theorem Int.cast_max {α : Type u_3} [LinearOrderedRing α] {a : } {b : } :
        (max a b) = max a b
        @[simp]
        theorem Int.cast_abs {α : Type u_3} [LinearOrderedRing α] {a : } :
        |a| = |a|
        theorem Int.cast_one_le_of_pos {α : Type u_3} [LinearOrderedRing α] {a : } (h : 0 < a) :
        1 a
        theorem Int.cast_le_neg_one_of_neg {α : Type u_3} [LinearOrderedRing α] {a : } (h : a < 0) :
        a -1
        theorem Int.cast_le_neg_one_or_one_le_cast_of_ne_zero (α : Type u_3) [LinearOrderedRing α] {n : } (hn : n 0) :
        n -1 1 n
        theorem Int.nneg_mul_add_sq_of_abs_le_one {α : Type u_3} [LinearOrderedRing α] (n : ) {x : α} (hx : |x| 1) :
        0 n * x + n * n
        theorem Int.cast_natAbs {α : Type u_3} [LinearOrderedRing α] (n : ) :
        (Int.natAbs n) = |n|
        theorem Int.coe_int_dvd {α : Type u_3} [CommRing α] (m : ) (n : ) (h : m n) :
        m n
        theorem AddMonoidHom.ext_int {A : Type u_5} [AddMonoid A] {f : →+ A} {g : →+ A} (h1 : f 1 = g 1) :
        f = g

        Two additive monoid homomorphisms f, g from to an additive monoid are equal if f 1 = g 1.

        theorem AddMonoidHom.eq_int_castAddHom {A : Type u_5} [AddGroupWithOne A] (f : →+ A) (h1 : f 1 = 1) :
        theorem eq_intCast' {F : Type u_1} {α : Type u_3} [AddGroupWithOne α] [AddMonoidHomClass F α] (f : F) (h₁ : f 1 = 1) (n : ) :
        f n = n
        theorem MonoidHom.ext_mint {M : Type u_5} [Monoid M] {f : Multiplicative →* M} {g : Multiplicative →* M} (h1 : f (Multiplicative.ofAdd 1) = g (Multiplicative.ofAdd 1)) :
        f = g
        theorem MonoidHom.ext_int {M : Type u_5} [Monoid M] {f : →* M} {g : →* M} (h_neg_one : f (-1) = g (-1)) (h_nat : MonoidHom.comp f Int.ofNatHom = MonoidHom.comp g Int.ofNatHom) :
        f = g

        If two MonoidHoms agree on -1 and the naturals then they are equal.

        If two MonoidWithZeroHoms agree on -1 and the naturals then they are equal.

        theorem ext_int' {F : Type u_1} {α : Type u_3} [MonoidWithZero α] [MonoidWithZeroHomClass F α] {f : F} {g : F} (h_neg_one : f (-1) = g (-1)) (h_pos : ∀ (n : ), 0 < nf n = g n) :
        f = g

        If two MonoidWithZeroHoms agree on -1 and the positive naturals then they are equal.

        @[simp]
        theorem eq_intCast {F : Type u_1} {α : Type u_3} [NonAssocRing α] [RingHomClass F α] (f : F) (n : ) :
        f n = n
        @[simp]
        theorem map_intCast {F : Type u_1} {α : Type u_3} {β : Type u_4} [NonAssocRing α] [NonAssocRing β] [RingHomClass F α β] (f : F) (n : ) :
        f n = n
        theorem RingHom.eq_intCast' {α : Type u_3} [NonAssocRing α] (f : →+* α) :
        theorem RingHom.ext_int {R : Type u_5} [NonAssocSemiring R] (f : →+* R) (g : →+* R) :
        f = g
        instance Pi.intCast {ι : Type u_2} {π : ιType u_5} [(i : ι) → IntCast (π i)] :
        IntCast ((i : ι) → π i)
        Equations
        • Pi.intCast = { intCast := fun (n : ) (x : ι) => n }
        theorem Pi.int_apply {ι : Type u_2} {π : ιType u_5} [(i : ι) → IntCast (π i)] (n : ) (i : ι) :
        n i = n
        @[simp]
        theorem Pi.coe_int {ι : Type u_2} {π : ιType u_5} [(i : ι) → IntCast (π i)] (n : ) :
        n = fun (x : ι) => n
        theorem Sum.elim_intCast_intCast {α : Type u_5} {β : Type u_6} {γ : Type u_7} [IntCast γ] (n : ) :
        Sum.elim n n = n

        Order dual #

        instance instIntCastOrderDual {α : Type u_3} [h : IntCast α] :
        Equations
        • instIntCastOrderDual = h
        Equations
        • instAddGroupWithOneOrderDual = h
        Equations
        • instAddCommGroupWithOneOrderDual = h
        @[simp]
        theorem toDual_intCast {α : Type u_3} [IntCast α] (n : ) :
        OrderDual.toDual n = n
        @[simp]
        theorem ofDual_intCast {α : Type u_3} [IntCast α] (n : ) :
        OrderDual.ofDual n = n

        Lexicographic order #

        instance instIntCastLex {α : Type u_3} [h : IntCast α] :
        Equations
        • instIntCastLex = h
        Equations
        • instAddGroupWithOneLex = h
        Equations
        • instAddCommGroupWithOneLex = h
        @[simp]
        theorem toLex_intCast {α : Type u_3} [IntCast α] (n : ) :
        toLex n = n
        @[simp]
        theorem ofLex_intCast {α : Type u_3} [IntCast α] (n : ) :
        ofLex n = n