Documentation

Mathlib.Data.Set.Intervals.OrdConnected

Order-connected sets #

We say that a set s : Set α is OrdConnected if for all x y ∈ s it includes the interval [[x, y]]. If α is a DenselyOrdered ConditionallyCompleteLinearOrder with the OrderTopology, then this condition is equivalent to IsPreconnected s. If α is a LinearOrderedField, then this condition is also equivalent to Convex α s.

In this file we prove that intersection of a family of OrdConnected sets is OrdConnected and that all standard intervals are OrdConnected.

class Set.OrdConnected {α : Type u_1} [Preorder α] (s : Set α) :

We say that a set s : Set α is OrdConnected if for all x y ∈ s it includes the interval [[x, y]]. If α is a DenselyOrdered ConditionallyCompleteLinearOrder with the OrderTopology, then this condition is equivalent to IsPreconnected s. If α is a LinearOrderedField, then this condition is also equivalent to Convex α s.

  • out' : ∀ ⦃x : α⦄, x s✝∀ ⦃y : α⦄, y s✝Set.Icc x y s✝

    s : Set α is OrdConnected if for all x y ∈ s it includes the interval [[x, y]].

Instances
    theorem Set.OrdConnected.out {α : Type u_1} [Preorder α] {s : Set α} (h : Set.OrdConnected s) ⦃x : α :
    x s∀ ⦃y : α⦄, y sSet.Icc x y s
    theorem Set.ordConnected_def {α : Type u_1} [Preorder α] {s : Set α} :
    Set.OrdConnected s ∀ ⦃x : α⦄, x s∀ ⦃y : α⦄, y sSet.Icc x y s
    theorem Set.ordConnected_iff {α : Type u_1} [Preorder α] {s : Set α} :
    Set.OrdConnected s xs, ys, x ySet.Icc x y s

    It suffices to prove [[x, y]] ⊆ s for x y ∈ s, x ≤ y.

    theorem Set.ordConnected_of_Ioo {α : Type u_3} [PartialOrder α] {s : Set α} (hs : xs, ys, x < ySet.Ioo x y s) :
    theorem Set.OrdConnected.preimage_mono {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {s : Set α} {f : βα} (hs : Set.OrdConnected s) (hf : Monotone f) :
    theorem Set.OrdConnected.preimage_anti {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {s : Set α} {f : βα} (hs : Set.OrdConnected s) (hf : Antitone f) :
    theorem Set.Icc_subset {α : Type u_1} [Preorder α] (s : Set α) [hs : Set.OrdConnected s] {x : α} {y : α} (hx : x s) (hy : y s) :
    Set.Icc x y s
    @[simp]
    theorem Set.image_subtype_val_Icc {α : Type u_1} [Preorder α] {s : Set α} [Set.OrdConnected s] (x : s) (y : s) :
    Subtype.val '' Set.Icc x y = Set.Icc x y
    @[simp]
    theorem Set.image_subtype_val_Ico {α : Type u_1} [Preorder α] {s : Set α} [Set.OrdConnected s] (x : s) (y : s) :
    Subtype.val '' Set.Ico x y = Set.Ico x y
    @[simp]
    theorem Set.image_subtype_val_Ioc {α : Type u_1} [Preorder α] {s : Set α} [Set.OrdConnected s] (x : s) (y : s) :
    Subtype.val '' Set.Ioc x y = Set.Ioc x y
    @[simp]
    theorem Set.image_subtype_val_Ioo {α : Type u_1} [Preorder α] {s : Set α} [Set.OrdConnected s] (x : s) (y : s) :
    Subtype.val '' Set.Ioo x y = Set.Ioo x y
    theorem Set.OrdConnected.inter {α : Type u_1} [Preorder α] {s : Set α} {t : Set α} (hs : Set.OrdConnected s) (ht : Set.OrdConnected t) :
    instance Set.OrdConnected.inter' {α : Type u_1} [Preorder α] {s : Set α} {t : Set α} [Set.OrdConnected s] [Set.OrdConnected t] :
    Equations
    theorem Set.OrdConnected.dual {α : Type u_1} [Preorder α] {s : Set α} (hs : Set.OrdConnected s) :
    Set.OrdConnected (OrderDual.ofDual ⁻¹' s)
    theorem Set.ordConnected_dual {α : Type u_1} [Preorder α] {s : Set α} :
    Set.OrdConnected (OrderDual.ofDual ⁻¹' s) Set.OrdConnected s
    theorem Set.ordConnected_sInter {α : Type u_1} [Preorder α] {S : Set (Set α)} (hS : sS, Set.OrdConnected s) :
    theorem Set.ordConnected_iInter {α : Type u_1} [Preorder α] {ι : Sort u_3} {s : ιSet α} (hs : ∀ (i : ι), Set.OrdConnected (s i)) :
    Set.OrdConnected (⋂ (i : ι), s i)
    instance Set.ordConnected_iInter' {α : Type u_1} [Preorder α] {ι : Sort u_3} {s : ιSet α} [∀ (i : ι), Set.OrdConnected (s i)] :
    Set.OrdConnected (⋂ (i : ι), s i)
    Equations
    theorem Set.ordConnected_biInter {α : Type u_1} [Preorder α] {ι : Sort u_3} {p : ιProp} {s : (i : ι) → p iSet α} (hs : ∀ (i : ι) (hi : p i), Set.OrdConnected (s i hi)) :
    Set.OrdConnected (⋂ (i : ι), ⋂ (hi : p i), s i hi)
    theorem Set.ordConnected_pi {ι : Type u_3} {α : ιType u_4} [(i : ι) → Preorder (α i)] {s : Set ι} {t : (i : ι) → Set (α i)} (h : is, Set.OrdConnected (t i)) :
    instance Set.ordConnected_pi' {ι : Type u_3} {α : ιType u_4} [(i : ι) → Preorder (α i)] {s : Set ι} {t : (i : ι) → Set (α i)} [h : ∀ (i : ι), Set.OrdConnected (t i)] :
    Equations
    theorem Set.ordConnected_Ici {α : Type u_1} [Preorder α] {a : α} :
    theorem Set.ordConnected_Iic {α : Type u_1} [Preorder α] {a : α} :
    theorem Set.ordConnected_Ioi {α : Type u_1} [Preorder α] {a : α} :
    theorem Set.ordConnected_Iio {α : Type u_1} [Preorder α] {a : α} :
    theorem Set.ordConnected_Icc {α : Type u_1} [Preorder α] {a : α} {b : α} :
    theorem Set.ordConnected_Ico {α : Type u_1} [Preorder α] {a : α} {b : α} :
    theorem Set.ordConnected_Ioc {α : Type u_1} [Preorder α] {a : α} {b : α} :
    theorem Set.ordConnected_Ioo {α : Type u_1} [Preorder α] {a : α} {b : α} :
    theorem Set.ordConnected_univ {α : Type u_1} [Preorder α] :
    instance Set.instDenselyOrdered {α : Type u_1} [Preorder α] [DenselyOrdered α] {s : Set α} [hs : Set.OrdConnected s] :

    In a dense order α, the subtype from an OrdConnected set is also densely ordered.

    Equations
    theorem Set.ordConnected_preimage {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {F : Type u_3} [OrderHomClass F α β] (f : F) {s : Set β} [hs : Set.OrdConnected s] :
    theorem Set.ordConnected_image {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {E : Type u_3} [OrderIsoClass E α β] (e : E) {s : Set α} [hs : Set.OrdConnected s] :
    theorem Set.ordConnected_range {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {E : Type u_3} [OrderIsoClass E α β] (e : E) :
    @[simp]
    theorem Set.dual_ordConnected_iff {α : Type u_1} [Preorder α] {s : Set α} :
    Set.OrdConnected (OrderDual.ofDual ⁻¹' s) Set.OrdConnected s
    theorem Set.dual_ordConnected {α : Type u_1} [Preorder α] {s : Set α} [Set.OrdConnected s] :
    Set.OrdConnected (OrderDual.ofDual ⁻¹' s)
    theorem IsAntichain.ordConnected {α : Type u_1} [PartialOrder α] {s : Set α} (hs : IsAntichain (fun (x x_1 : α) => x x_1) s) :
    theorem Set.ordConnected_uIcc {α : Type u_1} [LinearOrder α] {a : α} {b : α} :
    theorem Set.ordConnected_uIoc {α : Type u_1} [LinearOrder α] {a : α} {b : α} :
    theorem Set.OrdConnected.uIcc_subset {α : Type u_1} [LinearOrder α] {s : Set α} (hs : Set.OrdConnected s) ⦃x : α (hx : x s) ⦃y : α (hy : y s) :
    theorem Set.OrdConnected.uIoc_subset {α : Type u_1} [LinearOrder α] {s : Set α} (hs : Set.OrdConnected s) ⦃x : α (hx : x s) ⦃y : α (hy : y s) :
    Ι x y s
    theorem Set.ordConnected_iff_uIcc_subset {α : Type u_1} [LinearOrder α] {s : Set α} :
    Set.OrdConnected s ∀ ⦃x : α⦄, x s∀ ⦃y : α⦄, y sSet.uIcc x y s
    theorem Set.ordConnected_of_uIcc_subset_left {α : Type u_1} [LinearOrder α] {s : Set α} {x : α} (h : ys, Set.uIcc x y s) :
    theorem Set.ordConnected_iff_uIcc_subset_left {α : Type u_1} [LinearOrder α] {s : Set α} {x : α} (hx : x s) :
    Set.OrdConnected s ∀ ⦃y : α⦄, y sSet.uIcc x y s
    theorem Set.ordConnected_iff_uIcc_subset_right {α : Type u_1} [LinearOrder α] {s : Set α} {x : α} (hx : x s) :
    Set.OrdConnected s ∀ ⦃y : α⦄, y sSet.uIcc y x s