Scalar actions on and by Mᵐᵒᵖ #
This file defines the actions on the opposite type SMul R Mᵐᵒᵖ, and actions by the opposite
type, SMul Rᵐᵒᵖ M.
Note that MulOpposite.smul is provided in an earlier file as it is needed to
provide the AddMonoid.nsmul and AddCommGroup.zsmul fields.
Actions on the opposite type #
Actions on the opposite type just act on the underlying type.
Equations
- (_ : VAddAssocClass M N αᵃᵒᵖ) = (_ : VAddAssocClass M N αᵃᵒᵖ)
Equations
- (_ : IsScalarTower M N αᵐᵒᵖ) = (_ : IsScalarTower M N αᵐᵒᵖ)
Equations
- (_ : VAddCommClass M N αᵃᵒᵖ) = (_ : VAddCommClass M N αᵃᵒᵖ)
Equations
- (_ : SMulCommClass M N αᵐᵒᵖ) = (_ : SMulCommClass M N αᵐᵒᵖ)
Equations
- (_ : IsCentralVAdd R αᵃᵒᵖ) = (_ : IsCentralVAdd R αᵃᵒᵖ)
Equations
- (_ : IsCentralScalar R αᵐᵒᵖ) = (_ : IsCentralScalar R αᵐᵒᵖ)
Actions by the opposite type (right actions) #
In Mul.toSMul in another file, we define the left action a₁ • a₂ = a₁ * a₂. For the
multiplicative opposite, we define MulOpposite.op a₁ • a₂ = a₂ * a₁, with the multiplication
reversed.
Like Add.toVAdd, but adds on the right.
See also AddMonoid.to_OppositeAddAction.
Equations
- Add.toHasOppositeVAdd α = { vadd := fun (c : αᵃᵒᵖ) (x : α) => x + AddOpposite.unop c }
Like Mul.toSMul, but multiplies on the right.
See also Monoid.toOppositeMulAction and MonoidWithZero.toOppositeMulActionWithZero.
Equations
- Mul.toHasOppositeSMul α = { smul := fun (c : αᵐᵒᵖ) (x : α) => x * MulOpposite.unop c }
The right regular action of an additive group on itself is transitive.
Equations
- (_ : AddAction.IsPretransitive Gᵃᵒᵖ G) = (_ : AddAction.IsPretransitive Gᵃᵒᵖ G)
The right regular action of a group on itself is transitive.
Equations
- (_ : MulAction.IsPretransitive Gᵐᵒᵖ G) = (_ : MulAction.IsPretransitive Gᵐᵒᵖ G)
Equations
- (_ : VAddCommClass αᵃᵒᵖ α α) = (_ : VAddCommClass αᵃᵒᵖ α α)
Equations
- (_ : SMulCommClass αᵐᵒᵖ α α) = (_ : SMulCommClass αᵐᵒᵖ α α)
Equations
- (_ : VAddCommClass α αᵃᵒᵖ α) = (_ : VAddCommClass α αᵃᵒᵖ α)
Equations
- (_ : SMulCommClass α αᵐᵒᵖ α) = (_ : SMulCommClass α αᵐᵒᵖ α)
Equations
- (_ : IsCentralVAdd α α) = (_ : IsCentralVAdd α α)
Equations
- (_ : IsCentralScalar α α) = (_ : IsCentralScalar α α)
Like AddMonoid.toAddAction, but adds on the right.
Equations
- One or more equations did not get rendered due to their size.
Like Monoid.toMulAction, but multiplies on the right.
Equations
- One or more equations did not get rendered due to their size.
Equations
- (_ : VAddAssocClass M Nᵃᵒᵖ N) = (_ : VAddAssocClass M Nᵃᵒᵖ N)
Equations
- (_ : IsScalarTower M Nᵐᵒᵖ N) = (_ : IsScalarTower M Nᵐᵒᵖ N)
Equations
- (_ : VAddCommClass M Nᵃᵒᵖ N) = (_ : VAddCommClass M Nᵃᵒᵖ N)
Equations
- (_ : SMulCommClass M Nᵐᵒᵖ N) = (_ : SMulCommClass M Nᵐᵒᵖ N)
AddMonoid.toOppositeAddAction is faithful on cancellative monoids.
Equations
- (_ : FaithfulVAdd αᵃᵒᵖ α) = (_ : FaithfulVAdd αᵃᵒᵖ α)
Monoid.toOppositeMulAction is faithful on cancellative monoids.
Equations
- (_ : FaithfulSMul αᵐᵒᵖ α) = (_ : FaithfulSMul αᵐᵒᵖ α)
Monoid.toOppositeMulAction is faithful on nontrivial cancellative monoids with zero.
Equations
- (_ : FaithfulSMul αᵐᵒᵖ α) = (_ : FaithfulSMul αᵐᵒᵖ α)