Documentation

Mathlib.Init.Algebra.Classes

Unbundled algebra classes #

These classes are part of an incomplete refactor described here on the github Wiki. However a subset of them are widely used in mathlib3, and it has been tricky to clean this up as this file was in core Lean 3.

By themselves, these classes are not good replacements for the Monoid / Group etc structures provided by mathlib, as they are not discoverable by simp unlike the current lemmas due to there being little to index on. The Wiki page linked above describes an algebraic normalizer, but it was never implemented in Lean 3.

Porting notes: #

This file is ancient, and it would be good to replace it with a clean version that provides what mathlib4 actually needs.

I've omitted all the @[algebra] attributes, as they are not used elsewhere.

The section StrictWeakOrder has been omitted, but I've left the mathport output in place. Please delete if cleaning up.

I've commented out some classes which we think are completely unused in mathlib.

I've added many of the declarations to nolints.json. If you clean up this file, please add documentation to classes that we are keeping.

Mario made the following analysis of uses in mathlib3:

class IsSymmOp (α : Type u) (β : Type v) (op : ααβ) :
  • symm_op : ∀ (a b : α), op a b = op b a
Instances
    class IsCommutative (α : Type u) (op : ααα) :

    A commutative binary operation.

    • comm : ∀ (a b : α), op a b = op b a
    Instances
      instance instIsCommutative {α : Type u_1} {op : ααα} [IsCommutative α op] :
      Equations
      • instIsCommutative = { comm := (_ : ∀ (a b : α), op a b = op b a) }
      instance isSymmOp_of_isCommutative (α : Type u) (op : ααα) [IsCommutative α op] :
      IsSymmOp α α op
      Equations
      class IsAssociative (α : Type u) (op : ααα) :

      An associative binary operation.

      • assoc : ∀ (a b c : α), op (op a b) c = op a (op b c)
      Instances
        instance instIsAssociative {α : Type u_1} {op : ααα} [IsAssociative α op] :
        Equations
        • instIsAssociative = { assoc := (_ : ∀ (a b c : α), op (op a b) c = op a (op b c)) }
        class IsLeftId (α : Type u) (op : ααα) (o : outParam α) :

        A binary operation with a left identity.

        • left_id : ∀ (a : α), op o a = a
        Instances
          class IsRightId (α : Type u) (op : ααα) (o : outParam α) :

          A binary operation with a right identity.

          • right_id : ∀ (a : α), op a o = a
          Instances
            instance instIsNeutral {α : Type u_1} {o : α} {op : ααα} [IsLeftId α op o] [IsRightId α op o] :
            Equations
            • instIsNeutral = { left_neutral := (_ : ∀ (a : α), op o a = a), right_neutral := (_ : ∀ (a : α), op a o = a) }
            class IsLeftCancel (α : Type u) (op : ααα) :
            • left_cancel : ∀ (a b c : α), op a b = op a cb = c
            Instances
              class IsRightCancel (α : Type u) (op : ααα) :
              • right_cancel : ∀ (a b c : α), op a b = op c ba = c
              Instances
                class IsIdempotent (α : Type u) (op : ααα) :
                • idempotent : ∀ (a : α), op a a = a
                Instances
                  instance instIsIdempotent {α : Type u_1} {op : ααα} [IsIdempotent α op] :
                  Equations
                  • instIsIdempotent = { idempotent := (_ : ∀ (a : α), op a a = a) }
                  class IsIrrefl (α : Type u) (r : ααProp) :

                  IsIrrefl X r means the binary relation r on X is irreflexive (that is, r x x never holds).

                  • irrefl : ∀ (a : α), ¬r a a
                  Instances
                    class IsRefl (α : Type u) (r : ααProp) :

                    IsRefl X r means the binary relation r on X is reflexive.

                    • refl : ∀ (a : α), r a a
                    Instances
                      class IsSymm (α : Type u) (r : ααProp) :

                      IsSymm X r means the binary relation r on X is symmetric.

                      • symm : ∀ (a b : α), r a br b a
                      Instances
                        instance isSymmOp_of_isSymm (α : Type u) (r : ααProp) [IsSymm α r] :

                        The opposite of a symmetric relation is symmetric.

                        Equations
                        class IsAsymm (α : Type u) (r : ααProp) :

                        IsAsymm X r means that the binary relation r on X is asymmetric, that is, r a b → ¬ r b a.

                        • asymm : ∀ (a b : α), r a b¬r b a
                        Instances
                          class IsAntisymm (α : Type u) (r : ααProp) :

                          IsAntisymm X r means the binary relation r on X is antisymmetric.

                          • antisymm : ∀ (a b : α), r a br b aa = b
                          Instances
                            class IsTrans (α : Type u) (r : ααProp) :

                            IsTrans X r means the binary relation r on X is transitive.

                            • trans : ∀ (a b c : α), r a br b cr a c
                            Instances
                              instance instTrans {α : Type u} {r : ααProp} [IsTrans α r] :
                              Trans r r r
                              Equations
                              • instTrans = { trans := (_ : ∀ {a b c : α}, r a br b cr a c) }
                              instance instIsTrans {α : Type u} {r : ααProp} [Trans r r r] :
                              IsTrans α r
                              Equations
                              class IsTotal (α : Type u) (r : ααProp) :

                              IsTotal X r means that the binary relation r on X is total, that is, that for any x y : X we have r x y or r y x.

                              • total : ∀ (a b : α), r a b r b a
                              Instances
                                class IsPreorder (α : Type u) (r : ααProp) extends IsRefl , IsTrans :

                                IsPreorder X r means that the binary relation r on X is a pre-order, that is, reflexive and transitive.

                                  Instances
                                    class IsTotalPreorder (α : Type u) (r : ααProp) extends IsTrans , IsTotal :

                                    IsTotalPreorder X r means that the binary relation r on X is total and a preorder.

                                      Instances
                                        instance isTotalPreorder_isPreorder (α : Type u) (r : ααProp) [s : IsTotalPreorder α r] :

                                        Every total pre-order is a pre-order.

                                        Equations
                                        class IsPartialOrder (α : Type u) (r : ααProp) extends IsPreorder , IsAntisymm :

                                        IsPartialOrder X r means that the binary relation r on X is a partial order, that is, IsPreorder X r and IsAntisymm X r.

                                          Instances
                                            class IsLinearOrder (α : Type u) (r : ααProp) extends IsPartialOrder , IsTotal :

                                            IsLinearOrder X r means that the binary relation r on X is a linear order, that is, IsPartialOrder X r and IsTotal X r.

                                              Instances
                                                class IsEquiv (α : Type u) (r : ααProp) extends IsPreorder , IsSymm :

                                                IsEquiv X r means that the binary relation r on X is an equivalence relation, that is, IsPreorder X r and IsSymm X r.

                                                  Instances
                                                    class IsStrictOrder (α : Type u) (r : ααProp) extends IsIrrefl , IsTrans :

                                                    IsStrictOrder X r means that the binary relation r on X is a strict order, that is, IsIrrefl X r and IsTrans X r.

                                                      Instances
                                                        class IsIncompTrans (α : Type u) (lt : ααProp) :

                                                        IsIncompTrans X lt means that for lt a binary relation on X, the incomparable relation fun a b => ¬ lt a b ∧ ¬ lt b a is transitive.

                                                        • incomp_trans : ∀ (a b c : α), ¬lt a b ¬lt b a¬lt b c ¬lt c b¬lt a c ¬lt c a
                                                        Instances
                                                          class IsStrictWeakOrder (α : Type u) (lt : ααProp) extends IsStrictOrder , IsIncompTrans :

                                                          IsStrictWeakOrder X lt means that the binary relation lt on X is a strict weak order, that is, IsStrictOrder X lt and IsIncompTrans X lt.

                                                            Instances
                                                              class IsTrichotomous (α : Type u) (lt : ααProp) :

                                                              IsTrichotomous X lt means that the binary relation lt on X is trichotomous, that is, either lt a b or a = b or lt b a for any a and b.

                                                              • trichotomous : ∀ (a b : α), lt a b a = b lt b a
                                                              Instances
                                                                class IsStrictTotalOrder (α : Type u) (lt : ααProp) extends IsTrichotomous , IsStrictOrder :

                                                                IsStrictTotalOrder X lt means that the binary relation lt on X is a strict total order, that is, IsTrichotomous X lt and IsStrictOrder X lt.

                                                                  Instances
                                                                    instance eq_isEquiv (α : Type u) :
                                                                    IsEquiv α fun (x x_1 : α) => x = x_1

                                                                    Equality is an equivalence relation.

                                                                    Equations
                                                                    • (_ : IsEquiv α fun (x x_1 : α) => x = x_1) = (_ : IsEquiv α fun (x x_1 : α) => x = x_1)
                                                                    theorem irrefl {α : Type u} {r : ααProp} [IsIrrefl α r] (a : α) :
                                                                    ¬r a a
                                                                    theorem refl {α : Type u} {r : ααProp} [IsRefl α r] (a : α) :
                                                                    r a a
                                                                    theorem trans {α : Type u} {r : ααProp} [IsTrans α r] {a : α} {b : α} {c : α} :
                                                                    r a br b cr a c
                                                                    theorem symm {α : Type u} {r : ααProp} [IsSymm α r] {a : α} {b : α} :
                                                                    r a br b a
                                                                    theorem antisymm {α : Type u} {r : ααProp} [IsAntisymm α r] {a : α} {b : α} :
                                                                    r a br b aa = b
                                                                    theorem asymm {α : Type u} {r : ααProp} [IsAsymm α r] {a : α} {b : α} :
                                                                    r a b¬r b a
                                                                    theorem trichotomous {α : Type u} {r : ααProp} [IsTrichotomous α r] (a : α) (b : α) :
                                                                    r a b a = b r b a
                                                                    theorem incomp_trans {α : Type u} {r : ααProp} [IsIncompTrans α r] {a : α} {b : α} {c : α} :
                                                                    ¬r a b ¬r b a¬r b c ¬r c b¬r a c ¬r c a
                                                                    instance isAsymm_of_isTrans_of_isIrrefl {α : Type u} {r : ααProp} [IsTrans α r] [IsIrrefl α r] :
                                                                    IsAsymm α r
                                                                    Equations
                                                                    @[elab_without_expected_type]
                                                                    theorem irrefl_of {α : Type u} (r : ααProp) [IsIrrefl α r] (a : α) :
                                                                    ¬r a a
                                                                    @[elab_without_expected_type]
                                                                    theorem refl_of {α : Type u} (r : ααProp) [IsRefl α r] (a : α) :
                                                                    r a a
                                                                    @[elab_without_expected_type]
                                                                    theorem trans_of {α : Type u} (r : ααProp) [IsTrans α r] {a : α} {b : α} {c : α} :
                                                                    r a br b cr a c
                                                                    @[elab_without_expected_type]
                                                                    theorem symm_of {α : Type u} (r : ααProp) [IsSymm α r] {a : α} {b : α} :
                                                                    r a br b a
                                                                    @[elab_without_expected_type]
                                                                    theorem asymm_of {α : Type u} (r : ααProp) [IsAsymm α r] {a : α} {b : α} :
                                                                    r a b¬r b a
                                                                    @[elab_without_expected_type]
                                                                    theorem total_of {α : Type u} (r : ααProp) [IsTotal α r] (a : α) (b : α) :
                                                                    r a b r b a
                                                                    @[elab_without_expected_type]
                                                                    theorem trichotomous_of {α : Type u} (r : ααProp) [IsTrichotomous α r] (a : α) (b : α) :
                                                                    r a b a = b r b a
                                                                    @[elab_without_expected_type]
                                                                    theorem incomp_trans_of {α : Type u} (r : ααProp) [IsIncompTrans α r] {a : α} {b : α} {c : α} :
                                                                    ¬r a b ¬r b a¬r b c ¬r c b¬r a c ¬r c a
                                                                    def StrictWeakOrder.Equiv {α : Type u} {r : ααProp} (a : α) (b : α) :
                                                                    Equations
                                                                    Instances For
                                                                      theorem StrictWeakOrder.erefl {α : Type u} {r : ααProp} [IsStrictWeakOrder α r] (a : α) :
                                                                      theorem StrictWeakOrder.esymm {α : Type u} {r : ααProp} {a : α} {b : α} :
                                                                      theorem StrictWeakOrder.etrans {α : Type u} {r : ααProp} [IsStrictWeakOrder α r] {a : α} {b : α} {c : α} :
                                                                      theorem StrictWeakOrder.not_lt_of_equiv {α : Type u} {r : ααProp} {a : α} {b : α} :
                                                                      theorem StrictWeakOrder.not_lt_of_equiv' {α : Type u} {r : ααProp} {a : α} {b : α} :
                                                                      instance StrictWeakOrder.isEquiv {α : Type u} {r : ααProp} [IsStrictWeakOrder α r] :
                                                                      IsEquiv α StrictWeakOrder.Equiv
                                                                      Equations
                                                                      • (_ : IsEquiv α StrictWeakOrder.Equiv) = (_ : IsEquiv α StrictWeakOrder.Equiv)
                                                                      Equations
                                                                      • One or more equations did not get rendered due to their size.
                                                                      Instances For
                                                                        theorem isStrictWeakOrder_of_isTotalPreorder {α : Type u} {le : ααProp} {lt : ααProp} [DecidableRel le] [IsTotalPreorder α le] (h : ∀ (a b : α), lt a b ¬le b a) :
                                                                        theorem lt_of_lt_of_incomp {α : Type u} {lt : ααProp} [IsStrictWeakOrder α lt] [DecidableRel lt] {a : α} {b : α} {c : α} :
                                                                        lt a b¬lt b c ¬lt c blt a c
                                                                        theorem lt_of_incomp_of_lt {α : Type u} {lt : ααProp} [IsStrictWeakOrder α lt] [DecidableRel lt] {a : α} {b : α} {c : α} :
                                                                        ¬lt a b ¬lt b alt b clt a c
                                                                        theorem eq_of_incomp {α : Type u} {lt : ααProp} [IsTrichotomous α lt] {a : α} {b : α} :
                                                                        ¬lt a b ¬lt b aa = b
                                                                        theorem eq_of_eqv_lt {α : Type u} {lt : ααProp} [IsTrichotomous α lt] {a : α} {b : α} :
                                                                        theorem incomp_iff_eq {α : Type u} {lt : ααProp} [IsTrichotomous α lt] [IsIrrefl α lt] (a : α) (b : α) :
                                                                        ¬lt a b ¬lt b a a = b
                                                                        theorem eqv_lt_iff_eq {α : Type u} {lt : ααProp} [IsTrichotomous α lt] [IsIrrefl α lt] (a : α) (b : α) :
                                                                        theorem not_lt_of_lt {α : Type u} {lt : ααProp} [IsStrictOrder α lt] {a : α} {b : α} :
                                                                        lt a b¬lt b a