Documentation

Mathlib.Order.BoundedOrder

⊤ and ⊥, bounded lattices and variants #

This file defines top and bottom elements (greatest and least elements) of a type, the bounded variants of different kinds of lattices, sets up the typeclass hierarchy between them and provides instances for Prop and fun.

Main declarations #

Common lattices #

Top, bottom element #

theorem Top.ext {α : Type u} (x : Top α) (y : Top α) (top : = ) :
x = y
theorem Top.ext_iff {α : Type u} (x : Top α) (y : Top α) :
x = y =
class Top (α : Type u) :

Typeclass for the (\top) notation

  • top : α

    The top (, \top) element

Instances
    theorem Bot.ext {α : Type u} (x : Bot α) (y : Bot α) (bot : = ) :
    x = y
    theorem Bot.ext_iff {α : Type u} (x : Bot α) (y : Bot α) :
    x = y =
    class Bot (α : Type u) :

    Typeclass for the (\bot) notation

    • bot : α

      The bot (, \bot) element

    Instances

      The top (, \top) element

      Equations
      Instances For

        The bot (, \bot) element

        Equations
        Instances For
          instance top_nonempty (α : Type u) [Top α] :
          Equations
          instance bot_nonempty (α : Type u) [Bot α] :
          Equations
          class OrderTop (α : Type u) [LE α] extends Top :

          An order is an OrderTop if it has a greatest element. We state this using a data mixin, holding the value of and the greatest element constraint.

          • top : α
          • le_top : ∀ (a : α), a

            is the greatest element

          Instances
            noncomputable def topOrderOrNoTopOrder (α : Type u_3) [LE α] :

            An order is (noncomputably) either an OrderTop or a NoTopOrder. Use as casesI topOrderOrNoTopOrder α.

            Equations
            Instances For
              @[simp]
              theorem le_top {α : Type u} [LE α] [OrderTop α] {a : α} :
              @[simp]
              theorem isTop_top {α : Type u} [LE α] [OrderTop α] :
              @[simp]
              theorem isMax_top {α : Type u} [Preorder α] [OrderTop α] :
              @[simp]
              theorem not_top_lt {α : Type u} [Preorder α] [OrderTop α] {a : α} :
              theorem ne_top_of_lt {α : Type u} [Preorder α] [OrderTop α] {a : α} {b : α} (h : a < b) :
              theorem LT.lt.ne_top {α : Type u} [Preorder α] [OrderTop α] {a : α} {b : α} (h : a < b) :

              Alias of ne_top_of_lt.

              @[simp]
              theorem isMax_iff_eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
              @[simp]
              theorem isTop_iff_eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
              theorem not_isMax_iff_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
              theorem not_isTop_iff_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
              theorem IsMax.eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
              IsMax aa =

              Alias of the forward direction of isMax_iff_eq_top.

              theorem IsTop.eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
              IsTop aa =

              Alias of the forward direction of isTop_iff_eq_top.

              @[simp]
              theorem top_le_iff {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
              theorem top_unique {α : Type u} [PartialOrder α] [OrderTop α] {a : α} (h : a) :
              a =
              theorem eq_top_iff {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
              theorem eq_top_mono {α : Type u} [PartialOrder α] [OrderTop α] {a : α} {b : α} (h : a b) (h₂ : a = ) :
              b =
              theorem lt_top_iff_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
              @[simp]
              theorem not_lt_top_iff {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
              theorem eq_top_or_lt_top {α : Type u} [PartialOrder α] [OrderTop α] (a : α) :
              a = a <
              theorem Ne.lt_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} (h : a ) :
              a <
              theorem Ne.lt_top' {α : Type u} [PartialOrder α] [OrderTop α] {a : α} (h : a) :
              a <
              theorem ne_top_of_le_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} {b : α} (hb : b ) (hab : a b) :
              theorem StrictMono.apply_eq_top_iff {α : Type u} {β : Type v} [PartialOrder α] [OrderTop α] [Preorder β] {f : αβ} {a : α} (hf : StrictMono f) :
              f a = f a =
              theorem StrictAnti.apply_eq_top_iff {α : Type u} {β : Type v} [PartialOrder α] [OrderTop α] [Preorder β] {f : αβ} {a : α} (hf : StrictAnti f) :
              f a = f a =
              theorem StrictMono.maximal_preimage_top {α : Type u} {β : Type v} [LinearOrder α] [Preorder β] [OrderTop β] {f : αβ} (H : StrictMono f) {a : α} (h_top : f a = ) (x : α) :
              x a
              theorem OrderTop.ext_top {α : Type u_3} {hA : PartialOrder α} (A : OrderTop α) {hB : PartialOrder α} (B : OrderTop α) (H : ∀ (x y : α), x y x y) :
              class OrderBot (α : Type u) [LE α] extends Bot :

              An order is an OrderBot if it has a least element. We state this using a data mixin, holding the value of and the least element constraint.

              • bot : α
              • bot_le : ∀ (a : α), a

                is the least element

              Instances
                noncomputable def botOrderOrNoBotOrder (α : Type u_3) [LE α] :

                An order is (noncomputably) either an OrderBot or a NoBotOrder. Use as casesI botOrderOrNoBotOrder α.

                Equations
                Instances For
                  @[simp]
                  theorem bot_le {α : Type u} [LE α] [OrderBot α] {a : α} :
                  @[simp]
                  theorem isBot_bot {α : Type u} [LE α] [OrderBot α] :
                  instance OrderDual.top (α : Type u) [Bot α] :
                  Equations
                  instance OrderDual.bot (α : Type u) [Top α] :
                  Equations
                  instance OrderDual.orderTop (α : Type u) [LE α] [OrderBot α] :
                  Equations
                  instance OrderDual.orderBot (α : Type u) [LE α] [OrderTop α] :
                  Equations
                  @[simp]
                  theorem OrderDual.ofDual_bot (α : Type u) [Top α] :
                  OrderDual.ofDual =
                  @[simp]
                  theorem OrderDual.ofDual_top (α : Type u) [Bot α] :
                  OrderDual.ofDual =
                  @[simp]
                  theorem OrderDual.toDual_bot (α : Type u) [Bot α] :
                  OrderDual.toDual =
                  @[simp]
                  theorem OrderDual.toDual_top (α : Type u) [Top α] :
                  OrderDual.toDual =
                  @[simp]
                  theorem isMin_bot {α : Type u} [Preorder α] [OrderBot α] :
                  @[simp]
                  theorem not_lt_bot {α : Type u} [Preorder α] [OrderBot α] {a : α} :
                  theorem ne_bot_of_gt {α : Type u} [Preorder α] [OrderBot α] {a : α} {b : α} (h : a < b) :
                  theorem LT.lt.ne_bot {α : Type u} [Preorder α] [OrderBot α] {a : α} {b : α} (h : a < b) :

                  Alias of ne_bot_of_gt.

                  @[simp]
                  theorem isMin_iff_eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
                  @[simp]
                  theorem isBot_iff_eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
                  theorem not_isMin_iff_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
                  theorem not_isBot_iff_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
                  theorem IsMin.eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
                  IsMin aa =

                  Alias of the forward direction of isMin_iff_eq_bot.

                  theorem IsBot.eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
                  IsBot aa =

                  Alias of the forward direction of isBot_iff_eq_bot.

                  @[simp]
                  theorem le_bot_iff {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
                  theorem bot_unique {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : a ) :
                  a =
                  theorem eq_bot_iff {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
                  theorem eq_bot_mono {α : Type u} [PartialOrder α] [OrderBot α] {a : α} {b : α} (h : a b) (h₂ : b = ) :
                  a =
                  theorem bot_lt_iff_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
                  @[simp]
                  theorem not_bot_lt_iff {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
                  theorem eq_bot_or_bot_lt {α : Type u} [PartialOrder α] [OrderBot α] (a : α) :
                  a = < a
                  theorem eq_bot_of_minimal {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : ∀ (b : α), ¬b < a) :
                  a =
                  theorem Ne.bot_lt {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : a ) :
                  < a
                  theorem Ne.bot_lt' {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : a) :
                  < a
                  theorem ne_bot_of_le_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} {b : α} (hb : b ) (hab : b a) :
                  theorem StrictMono.apply_eq_bot_iff {α : Type u} {β : Type v} [PartialOrder α] [OrderBot α] [Preorder β] {f : αβ} {a : α} (hf : StrictMono f) :
                  f a = f a =
                  theorem StrictAnti.apply_eq_bot_iff {α : Type u} {β : Type v} [PartialOrder α] [OrderBot α] [Preorder β] {f : αβ} {a : α} (hf : StrictAnti f) :
                  f a = f a =
                  theorem StrictMono.minimal_preimage_bot {α : Type u} {β : Type v} [LinearOrder α] [PartialOrder β] [OrderBot β] {f : αβ} (H : StrictMono f) {a : α} (h_bot : f a = ) (x : α) :
                  a x
                  theorem OrderBot.ext_bot {α : Type u_3} {hA : PartialOrder α} (A : OrderBot α) {hB : PartialOrder α} (B : OrderBot α) (H : ∀ (x y : α), x y x y) :
                  theorem top_sup_eq {α : Type u} [SemilatticeSup α] [OrderTop α] {a : α} :
                  theorem sup_top_eq {α : Type u} [SemilatticeSup α] [OrderTop α] {a : α} :
                  theorem bot_sup_eq {α : Type u} [SemilatticeSup α] [OrderBot α] {a : α} :
                  a = a
                  theorem sup_bot_eq {α : Type u} [SemilatticeSup α] [OrderBot α] {a : α} :
                  a = a
                  @[simp]
                  theorem sup_eq_bot_iff {α : Type u} [SemilatticeSup α] [OrderBot α] {a : α} {b : α} :
                  a b = a = b =
                  theorem top_inf_eq {α : Type u} [SemilatticeInf α] [OrderTop α] {a : α} :
                  a = a
                  theorem inf_top_eq {α : Type u} [SemilatticeInf α] [OrderTop α] {a : α} :
                  a = a
                  @[simp]
                  theorem inf_eq_top_iff {α : Type u} [SemilatticeInf α] [OrderTop α] {a : α} {b : α} :
                  a b = a = b =
                  theorem bot_inf_eq {α : Type u} [SemilatticeInf α] [OrderBot α] {a : α} :
                  theorem inf_bot_eq {α : Type u} [SemilatticeInf α] [OrderBot α] {a : α} :

                  Bounded order #

                  class BoundedOrder (α : Type u) [LE α] extends OrderTop , OrderBot :

                  A bounded order describes an order (≤) with a top and bottom element, denoted and respectively.

                    Instances
                      Equations

                      In this section we prove some properties about monotone and antitone operations on Prop #

                      theorem monotone_and {α : Type u} [Preorder α] {p : αProp} {q : αProp} (m_p : Monotone p) (m_q : Monotone q) :
                      Monotone fun (x : α) => p x q x
                      theorem monotone_or {α : Type u} [Preorder α] {p : αProp} {q : αProp} (m_p : Monotone p) (m_q : Monotone q) :
                      Monotone fun (x : α) => p x q x
                      theorem monotone_le {α : Type u} [Preorder α] {x : α} :
                      Monotone ((fun (x x_1 : α) => x x_1) x)
                      theorem monotone_lt {α : Type u} [Preorder α] {x : α} :
                      Monotone ((fun (x x_1 : α) => x < x_1) x)
                      theorem antitone_le {α : Type u} [Preorder α] {x : α} :
                      Antitone fun (x_1 : α) => x_1 x
                      theorem antitone_lt {α : Type u} [Preorder α] {x : α} :
                      Antitone fun (x_1 : α) => x_1 < x
                      theorem Monotone.forall {α : Type u} {β : Type v} [Preorder α] {P : βαProp} (hP : ∀ (x : β), Monotone (P x)) :
                      Monotone fun (y : α) => ∀ (x : β), P x y
                      theorem Antitone.forall {α : Type u} {β : Type v} [Preorder α] {P : βαProp} (hP : ∀ (x : β), Antitone (P x)) :
                      Antitone fun (y : α) => ∀ (x : β), P x y
                      theorem Monotone.ball {α : Type u} {β : Type v} [Preorder α] {P : βαProp} {s : Set β} (hP : ∀ (x : β), x sMonotone (P x)) :
                      Monotone fun (y : α) => ∀ (x : β), x sP x y
                      theorem Antitone.ball {α : Type u} {β : Type v} [Preorder α] {P : βαProp} {s : Set β} (hP : ∀ (x : β), x sAntitone (P x)) :
                      Antitone fun (y : α) => ∀ (x : β), x sP x y
                      theorem Monotone.exists {α : Type u} {β : Type v} [Preorder α] {P : βαProp} (hP : ∀ (x : β), Monotone (P x)) :
                      Monotone fun (y : α) => ∃ (x : β), P x y
                      theorem Antitone.exists {α : Type u} {β : Type v} [Preorder α] {P : βαProp} (hP : ∀ (x : β), Antitone (P x)) :
                      Antitone fun (y : α) => ∃ (x : β), P x y
                      theorem forall_ge_iff {α : Type u} [Preorder α] {P : αProp} {x₀ : α} (hP : Monotone P) :
                      (∀ (x : α), x x₀P x) P x₀
                      theorem forall_le_iff {α : Type u} [Preorder α] {P : αProp} {x₀ : α} (hP : Antitone P) :
                      (∀ (x : α), x x₀P x) P x₀
                      theorem exists_ge_and_iff_exists {α : Type u} [SemilatticeSup α] {P : αProp} {x₀ : α} (hP : Monotone P) :
                      (∃ (x : α), x₀ x P x) ∃ (x : α), P x
                      theorem exists_le_and_iff_exists {α : Type u} [SemilatticeInf α] {P : αProp} {x₀ : α} (hP : Antitone P) :
                      (∃ (x : α), x x₀ P x) ∃ (x : α), P x

                      Function lattices #

                      instance Pi.instBotForAll {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Bot (α' i)] :
                      Bot ((i : ι) → α' i)
                      Equations
                      • Pi.instBotForAll = { bot := fun (x : ι) => }
                      @[simp]
                      theorem Pi.bot_apply {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Bot (α' i)] (i : ι) :
                      theorem Pi.bot_def {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Bot (α' i)] :
                      = fun (x : ι) =>
                      instance Pi.instTopForAll {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Top (α' i)] :
                      Top ((i : ι) → α' i)
                      Equations
                      • Pi.instTopForAll = { top := fun (x : ι) => }
                      @[simp]
                      theorem Pi.top_apply {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Top (α' i)] (i : ι) :
                      theorem Pi.top_def {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Top (α' i)] :
                      = fun (x : ι) =>
                      instance Pi.orderTop {ι : Type u_3} {α' : ιType u_4} [(i : ι) → LE (α' i)] [(i : ι) → OrderTop (α' i)] :
                      OrderTop ((i : ι) → α' i)
                      Equations
                      instance Pi.orderBot {ι : Type u_3} {α' : ιType u_4} [(i : ι) → LE (α' i)] [(i : ι) → OrderBot (α' i)] :
                      OrderBot ((i : ι) → α' i)
                      Equations
                      instance Pi.boundedOrder {ι : Type u_3} {α' : ιType u_4} [(i : ι) → LE (α' i)] [(i : ι) → BoundedOrder (α' i)] :
                      BoundedOrder ((i : ι) → α' i)
                      Equations
                      theorem eq_bot_of_bot_eq_top {α : Type u} [PartialOrder α] [BoundedOrder α] (hα : = ) (x : α) :
                      x =
                      theorem eq_top_of_bot_eq_top {α : Type u} [PartialOrder α] [BoundedOrder α] (hα : = ) (x : α) :
                      x =
                      @[reducible]
                      def OrderTop.lift {α : Type u} {β : Type v} [LE α] [Top α] [LE β] [OrderTop β] (f : αβ) (map_le : ∀ (a b : α), f a f ba b) (map_top : f = ) :

                      Pullback an OrderTop.

                      Equations
                      Instances For
                        @[reducible]
                        def OrderBot.lift {α : Type u} {β : Type v} [LE α] [Bot α] [LE β] [OrderBot β] (f : αβ) (map_le : ∀ (a b : α), f a f ba b) (map_bot : f = ) :

                        Pullback an OrderBot.

                        Equations
                        Instances For
                          @[reducible]
                          def BoundedOrder.lift {α : Type u} {β : Type v} [LE α] [Top α] [Bot α] [LE β] [BoundedOrder β] (f : αβ) (map_le : ∀ (a b : α), f a f ba b) (map_top : f = ) (map_bot : f = ) :

                          Pullback a BoundedOrder.

                          Equations
                          Instances For

                            Subtype, order dual, product lattices #

                            @[reducible]
                            def Subtype.orderBot {α : Type u} {p : αProp} [LE α] [OrderBot α] (hbot : p ) :
                            OrderBot { x : α // p x }

                            A subtype remains a -order if the property holds at .

                            Equations
                            Instances For
                              @[reducible]
                              def Subtype.orderTop {α : Type u} {p : αProp} [LE α] [OrderTop α] (htop : p ) :
                              OrderTop { x : α // p x }

                              A subtype remains a -order if the property holds at .

                              Equations
                              Instances For
                                @[reducible]
                                def Subtype.boundedOrder {α : Type u} {p : αProp} [LE α] [BoundedOrder α] (hbot : p ) (htop : p ) :

                                A subtype remains a bounded order if the property holds at and .

                                Equations
                                Instances For
                                  @[simp]
                                  theorem Subtype.mk_bot {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) :
                                  { val := , property := hbot } =
                                  @[simp]
                                  theorem Subtype.mk_top {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) :
                                  { val := , property := htop } =
                                  theorem Subtype.coe_bot {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) :
                                  =
                                  theorem Subtype.coe_top {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) :
                                  =
                                  @[simp]
                                  theorem Subtype.coe_eq_bot_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) {x : { x : α // p x }} :
                                  x = x =
                                  @[simp]
                                  theorem Subtype.coe_eq_top_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) {x : { x : α // p x }} :
                                  x = x =
                                  @[simp]
                                  theorem Subtype.mk_eq_bot_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) {x : α} (hx : p x) :
                                  { val := x, property := hx } = x =
                                  @[simp]
                                  theorem Subtype.mk_eq_top_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) {x : α} (hx : p x) :
                                  { val := x, property := hx } = x =
                                  instance Prod.top (α : Type u) (β : Type v) [Top α] [Top β] :
                                  Top (α × β)
                                  Equations
                                  instance Prod.bot (α : Type u) (β : Type v) [Bot α] [Bot β] :
                                  Bot (α × β)
                                  Equations
                                  theorem Prod.fst_top (α : Type u) (β : Type v) [Top α] [Top β] :
                                  theorem Prod.snd_top (α : Type u) (β : Type v) [Top α] [Top β] :
                                  theorem Prod.fst_bot (α : Type u) (β : Type v) [Bot α] [Bot β] :
                                  theorem Prod.snd_bot (α : Type u) (β : Type v) [Bot α] [Bot β] :
                                  instance Prod.orderTop (α : Type u) (β : Type v) [LE α] [LE β] [OrderTop α] [OrderTop β] :
                                  OrderTop (α × β)
                                  Equations
                                  instance Prod.orderBot (α : Type u) (β : Type v) [LE α] [LE β] [OrderBot α] [OrderBot β] :
                                  OrderBot (α × β)
                                  Equations
                                  instance Prod.boundedOrder (α : Type u) (β : Type v) [LE α] [LE β] [BoundedOrder α] [BoundedOrder β] :
                                  Equations
                                  instance ULift.instTopULift {α : Type u} [Top α] :
                                  Equations
                                  • ULift.instTopULift = { top := { down := } }
                                  @[simp]
                                  theorem ULift.up_top {α : Type u} [Top α] :
                                  { down := } =
                                  @[simp]
                                  theorem ULift.down_top {α : Type u} [Top α] :
                                  .down =
                                  instance ULift.instBotULift {α : Type u} [Bot α] :
                                  Equations
                                  • ULift.instBotULift = { bot := { down := } }
                                  @[simp]
                                  theorem ULift.up_bot {α : Type u} [Bot α] :
                                  { down := } =
                                  @[simp]
                                  theorem ULift.down_bot {α : Type u} [Bot α] :
                                  .down =
                                  Equations
                                  Equations
                                  Equations
                                  • ULift.instBoundedOrderULiftInstLEULift = BoundedOrder.mk
                                  theorem min_bot_left {α : Type u} [LinearOrder α] [OrderBot α] (a : α) :
                                  theorem max_top_left {α : Type u} [LinearOrder α] [OrderTop α] (a : α) :
                                  theorem min_top_left {α : Type u} [LinearOrder α] [OrderTop α] (a : α) :
                                  min a = a
                                  theorem max_bot_left {α : Type u} [LinearOrder α] [OrderBot α] (a : α) :
                                  max a = a
                                  theorem min_top_right {α : Type u} [LinearOrder α] [OrderTop α] (a : α) :
                                  min a = a
                                  theorem max_bot_right {α : Type u} [LinearOrder α] [OrderBot α] (a : α) :
                                  max a = a
                                  theorem min_bot_right {α : Type u} [LinearOrder α] [OrderBot α] (a : α) :
                                  theorem max_top_right {α : Type u} [LinearOrder α] [OrderTop α] (a : α) :
                                  @[simp]
                                  theorem min_eq_bot {α : Type u} [LinearOrder α] [OrderBot α] {a : α} {b : α} :
                                  min a b = a = b =
                                  @[simp]
                                  theorem max_eq_top {α : Type u} [LinearOrder α] [OrderTop α] {a : α} {b : α} :
                                  max a b = a = b =
                                  @[simp]
                                  theorem max_eq_bot {α : Type u} [LinearOrder α] [OrderBot α] {a : α} {b : α} :
                                  max a b = a = b =
                                  @[simp]
                                  theorem min_eq_top {α : Type u} [LinearOrder α] [OrderTop α] {a : α} {b : α} :
                                  min a b = a = b =
                                  @[simp]
                                  theorem bot_ne_top {α : Type u} [PartialOrder α] [BoundedOrder α] [Nontrivial α] :
                                  @[simp]
                                  theorem top_ne_bot {α : Type u} [PartialOrder α] [BoundedOrder α] [Nontrivial α] :
                                  @[simp]
                                  theorem bot_lt_top {α : Type u} [PartialOrder α] [BoundedOrder α] [Nontrivial α] :
                                  Equations
                                  @[simp]
                                  @[simp]