We define bitvectors. We choose the Fin
representation over others for its relative efficiency
(Lean has special support for Nat
), alignment with UIntXY
types which are also represented
with Fin
, and the fact that bitwise operations on Fin
are already defined. Some other possible
representations are List Bool
, { l : List Bool // l.length = w }
, Fin w → Bool
.
We define many of the bitvector operations from the
QF_BV
logic.
of SMT-LIBv2.
A bitvector of the specified width. This is represented as the underlying Nat
number
in both the runtime and the kernel, inheriting all the special support for Nat
.
- ofFin :: (
Interpret a bitvector as a number less than
2^w
. O(1), because we useFin
as the internal representation of a bitvector.- )
Instances For
Equations
- Std.instDecidableEqBitVec = Std.decEqBitVec✝
The BitVec
with value i mod 2^n
. Treated as an operation on bitvectors,
this is truncation of the high bits when downcasting and zero-extension when upcasting.
Equations
Instances For
Given a bitvector a
, return the underlying Nat
. This is O(1) because BitVec
is a
(zero-cost) wrapper around a Nat
.
Equations
- Std.BitVec.toNat a = a.toFin.val
Instances For
Return the bound in terms of toNat.
Return the i
-th least significant bit or false
if i ≥ w
.
Equations
- Std.BitVec.getLsb x i = Nat.testBit (Std.BitVec.toNat x) i
Instances For
Return the i
-th most significant bit or false
if i ≥ w
.
Equations
- Std.BitVec.getMsb x i = (decide (i < w) && Std.BitVec.getLsb x (w - 1 - i))
Instances For
Return most-significant bit in bitvector.
Equations
- Std.BitVec.msb a = Std.BitVec.getMsb a 0
Instances For
The BitVec
with value (2^n + (i mod 2^n)) mod 2^n
.
Equations
- Std.BitVec.ofInt n i = match i with | Int.ofNat a => a#n | Int.negSucc a => (2 ^ n - 1 - a % 2 ^ n)#n
Instances For
Interpret the bitvector as an integer stored in two's complement form.
Equations
- Std.BitVec.toInt a = if Std.BitVec.msb a = true then Int.ofNat (Std.BitVec.toNat a) - Int.ofNat (2 ^ n) else Int.ofNat (Std.BitVec.toNat a)
Instances For
Return a bitvector 0
of size n
. This is the bitvector with all zero bits.
Equations
- Std.BitVec.zero n = { toFin := { val := 0, isLt := (_ : 0 < 2 ^ n) } }
Instances For
Equations
- Std.BitVec.instInhabitedBitVec = { default := Std.BitVec.zero n }
Equations
- Std.BitVec.instOfNatBitVec = { ofNat := i#n }
Notation for bit vector literals. i#n
is a shorthand for BitVec.ofNat n i
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Unexpander for bit vector literals.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Convert bitvector into a fixed-width hex number.
Equations
- Std.BitVec.toHex x = let s := List.asString (Nat.toDigits 16 (Std.BitVec.toNat x)); let t := List.asString (List.replicate ((n + 3) / 4 - String.length s) (Char.ofNat 48)); t ++ s
Instances For
Equations
- One or more equations did not get rendered due to their size.
Equations
- Std.BitVec.instToStringBitVec = { toString := fun (a : Std.BitVec n) => toString (repr a) }
Theorem for normalizing the bit vector literal representation.
Addition for bit vectors. This can be interpreted as either signed or unsigned addition
modulo 2^n
.
SMT-Lib name: bvadd
.
Equations
- Std.BitVec.add x y = { toFin := x.toFin + y.toFin }
Instances For
Equations
- Std.BitVec.instAddBitVec = { add := Std.BitVec.add }
Subtraction for bit vectors. This can be interpreted as either signed or unsigned subtraction
modulo 2^n
.
Equations
- Std.BitVec.sub x y = { toFin := x.toFin - y.toFin }
Instances For
Equations
- Std.BitVec.instSubBitVec = { sub := Std.BitVec.sub }
Negation for bit vectors. This can be interpreted as either signed or unsigned negation
modulo 2^n
.
SMT-Lib name: bvneg
.
Equations
- Std.BitVec.neg x = Std.BitVec.sub 0 x
Instances For
Equations
- Std.BitVec.instNegBitVec = { neg := Std.BitVec.neg }
Return the absolute value of a signed bitvector.
Equations
- Std.BitVec.abs s = if Std.BitVec.msb s = true then Std.BitVec.neg s else s
Instances For
Multiplication for bit vectors. This can be interpreted as either signed or unsigned negation
modulo 2^n
.
SMT-Lib name: bvmul
.
Equations
- Std.BitVec.mul x y = { toFin := x.toFin * y.toFin }
Instances For
Equations
- Std.BitVec.instMulBitVec = { mul := Std.BitVec.mul }
Unsigned division for bit vectors using the Lean convention where division by zero returns zero.
Equations
- Std.BitVec.udiv x y = { toFin := x.toFin / y.toFin }
Instances For
Equations
- Std.BitVec.instDivBitVec = { div := Std.BitVec.udiv }
Unsigned modulo for bit vectors.
SMT-Lib name: bvurem
.
Equations
- Std.BitVec.umod x y = { toFin := x.toFin % y.toFin }
Instances For
Equations
- Std.BitVec.instModBitVec = { mod := Std.BitVec.umod }
Unsigned division for bit vectors using the
SMT-Lib convention
where division by zero returns the allOnes
bitvector.
SMT-Lib name: bvudiv
.
Equations
- Std.BitVec.smtUDiv x y = if y = 0 then -1 else Std.BitVec.udiv x y
Instances For
Signed division for bit vectors using SMTLIB rules for division by zero.
Specifically, smtSDiv x 0 = if x >= 0 then -1 else 1
SMT-Lib name: bvsdiv
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Remainder for signed division rounding to zero.
SMT_Lib name: bvsrem
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Remainder for signed division rounded to negative infinity.
SMT_Lib name: bvsmod
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Unsigned less-than for bit vectors.
SMT-Lib name: bvult
.
Equations
- Std.BitVec.ult x y = decide (x.toFin < y.toFin)
Instances For
Equations
- Std.BitVec.instLTBitVec = { lt := fun (x y : Std.BitVec n) => x.toFin < y.toFin }
Unsigned less-than-or-equal-to for bit vectors.
SMT-Lib name: bvule
.
Equations
- Std.BitVec.ule x y = decide (x.toFin ≤ y.toFin)
Instances For
Equations
- Std.BitVec.instLEBitVec = { le := fun (x y : Std.BitVec n) => x.toFin ≤ y.toFin }
Signed less-than for bit vectors.
BitVec.slt 6#4 7 = true
BitVec.slt 7#4 8 = false
SMT-Lib name: bvslt
.
Equations
- Std.BitVec.slt x y = decide (Std.BitVec.toInt x < Std.BitVec.toInt y)
Instances For
Signed less-than-or-equal-to for bit vectors.
SMT-Lib name: bvsle
.
Equations
- Std.BitVec.sle x y = decide (Std.BitVec.toInt x ≤ Std.BitVec.toInt y)
Instances For
Bitwise AND for bit vectors.
0b1010#4 &&& 0b0110#4 = 0b0010#4
SMT-Lib name: bvand
.
Equations
- Std.BitVec.and x y = { toFin := { val := Std.BitVec.toNat x &&& Std.BitVec.toNat y, isLt := (_ : Std.BitVec.toNat x &&& Std.BitVec.toNat y < 2 ^ n) } }
Instances For
Equations
- Std.BitVec.instAndOpBitVec = { and := Std.BitVec.and }
Bitwise OR for bit vectors.
0b1010#4 ||| 0b0110#4 = 0b1110#4
SMT-Lib name: bvor
.
Equations
- Std.BitVec.or x y = { toFin := { val := Std.BitVec.toNat x ||| Std.BitVec.toNat y, isLt := (_ : Std.BitVec.toNat x ||| Std.BitVec.toNat y < 2 ^ n) } }
Instances For
Equations
- Std.BitVec.instOrOpBitVec = { or := Std.BitVec.or }
Bitwise XOR for bit vectors.
0b1010#4 ^^^ 0b0110#4 = 0b1100#4
SMT-Lib name: bvxor
.
Equations
- Std.BitVec.xor x y = { toFin := { val := Std.BitVec.toNat x ^^^ Std.BitVec.toNat y, isLt := (_ : Std.BitVec.toNat x ^^^ Std.BitVec.toNat y < 2 ^ n) } }
Instances For
Equations
- Std.BitVec.instXorBitVec = { xor := Std.BitVec.xor }
Bitwise NOT for bit vectors.
~~~(0b0101#4) == 0b1010
SMT-Lib name: bvnot
.
Equations
- Std.BitVec.not x = -(x + 1#n)
Instances For
Equations
- Std.BitVec.instComplementBitVec = { complement := Std.BitVec.not }
Left shift for bit vectors. The low bits are filled with zeros. As a numeric operation, this is
equivalent to a * 2^s
, modulo 2^n
.
SMT-Lib name: bvshl
except this operator uses a Nat
shift value.
Equations
- Std.BitVec.shiftLeft a s = (Std.BitVec.toNat a <<< s)#n
Instances For
Equations
- Std.BitVec.instHShiftLeftBitVecNat = { hShiftLeft := Std.BitVec.shiftLeft }
(Logical) right shift for bit vectors. The high bits are filled with zeros.
As a numeric operation, this is equivalent to a / 2^s
, rounding down.
SMT-Lib name: bvlshr
except this operator uses a Nat
shift value.
Equations
- Std.BitVec.ushiftRight a s = (Std.BitVec.toNat a >>> s)#n
Instances For
Equations
- Std.BitVec.instHShiftRightBitVecNat = { hShiftRight := Std.BitVec.ushiftRight }
Arithmetic right shift for bit vectors. The high bits are filled with the
most-significant bit.
As a numeric operation, this is equivalent to a.toInt >>> s
.
SMT-Lib name: bvashr
except this operator uses a Nat
shift value.
Equations
- Std.BitVec.sshiftRight a s = Std.BitVec.ofInt n (Std.BitVec.toInt a >>> s)
Instances For
Equations
- Std.BitVec.instHShiftLeftBitVec = { hShiftLeft := fun (x : Std.BitVec m) (y : Std.BitVec n) => x <<< Std.BitVec.toNat y }
Equations
- Std.BitVec.instHShiftRightBitVec = { hShiftRight := fun (x : Std.BitVec m) (y : Std.BitVec n) => x >>> Std.BitVec.toNat y }
Rotate left for bit vectors. All the bits of x
are shifted to higher positions, with the top n
bits wrapping around to fill the low bits.
rotateLeft 0b0011#4 3 = 0b1001
SMT-Lib name: rotate_left
except this operator uses a Nat
shift amount.
Instances For
Rotate right for bit vectors. All the bits of x
are shifted to lower positions, with the
bottom n
bits wrapping around to fill the high bits.
rotateRight 0b01001#5 1 = 0b10100
SMT-Lib name: rotate_right
except this operator uses a Nat
shift amount.
Instances For
A version of zeroExtend
that requires a proof, but is a noop.
Equations
- Std.BitVec.zeroExtend' le x = { toFin := { val := Std.BitVec.toNat x, isLt := (_ : Std.BitVec.toNat x < 2 ^ w) } }
Instances For
shiftLeftZeroExtend x n
returns zeroExtend (w+n) x <<< n
without
needing to compute x % 2^(2+n)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Concatenation of bitvectors. This uses the "big endian" convention that the more significant
input is on the left, so 0xAB#8 ++ 0xCD#8 = 0xABCD#16
.
SMT-Lib name: concat
.
Equations
- Std.BitVec.append msbs lsbs = Std.BitVec.shiftLeftZeroExtend msbs m ||| Std.BitVec.zeroExtend' (_ : m ≤ n + m) lsbs
Instances For
Equations
- Std.BitVec.instHAppendBitVecHAddNatInstHAddInstAddNat = { hAppend := Std.BitVec.append }
Extraction of bits start
to start + len - 1
from a bit vector of size n
to yield a
new bitvector of size len
. If start + len > n
, then the vector will be zero-padded in the
high bits.
Equations
- Std.BitVec.extractLsb' start len a = (Std.BitVec.toNat a >>> start)#len
Instances For
Extraction of bits hi
(inclusive) down to lo
(inclusive) from a bit vector of size n
to
yield a new bitvector of size hi - lo + 1
.
SMT-Lib name: extract
.
Equations
- Std.BitVec.extractLsb hi lo a = Std.BitVec.extractLsb' lo (hi - lo + 1) a
Instances For
replicate i x
concatenates i
copies of x
into a new vector of length w*i
.
Equations
- Std.BitVec.replicate 0 x = 0
- Std.BitVec.replicate (Nat.succ n) x = let_fun hEq := (_ : w + w * n = w * (n + 1)); hEq ▸ (x ++ Std.BitVec.replicate n x)
Instances For
Fills a bitvector with w
copies of the bit b
.
Equations
- Std.BitVec.fill w b = bif b then -1 else 0
Instances For
Zero extend vector x
of length w
by adding zeros in the high bits until it has length v
.
If v < w
then it truncates the high bits instead.
SMT-Lib name: zero_extend
.
Equations
- Std.BitVec.zeroExtend v x = if h : w ≤ v then Std.BitVec.zeroExtend' h x else (Std.BitVec.toNat x)#v
Instances For
Truncate the high bits of bitvector x
of length w
, resulting in a vector of length v
.
If v > w
then it zero-extends the vector instead.
Equations
Instances For
Sign extend a vector of length w
, extending with i
additional copies of the most significant
bit in x
. If x
is an empty vector, then the sign is treated as zero.
SMT-Lib name: sign_extend
.
Equations
Instances For
We add simp-lemmas that rewrite bitvector operations into the equivalent notation
Turn a Bool
into a bitvector of length 1
Equations
- Std.BitVec.ofBool b = bif b then 1 else 0
Instances For
The empty bitvector
Equations
Instances For
Cons and Concat #
We give special names to the operations of adding a single bit to either end of a bitvector.
We follow the precedent of Vector.cons
/Vector.concat
both for the name, and for the decision
to have the resulting size be n + 1
for both operations (rather than 1 + n
, which would be the
result of appending a single bit to the front in the naive implementation).
Append a single bit to the end of a bitvector, using big endian order (see append
).
That is, the new bit is the least significant bit.
Equations
- Std.BitVec.concat msbs lsb = msbs ++ Std.BitVec.ofBool lsb
Instances For
Prepend a single bit to the front of a bitvector, using big endian order (see append
).
That is, the new bit is the most significant bit.
Equations
- Std.BitVec.cons msb lsbs = Std.BitVec.cast (_ : 1 + n = n + 1) (Std.BitVec.ofBool msb ++ lsbs)
Instances For
All empty bitvectors are equal
Equations
Every bitvector of length 0 is equal to nil
, i.e., there is only one empty bitvector