Documentation

Std.Data.RBMap.WF

Lemmas for Red-black trees #

The main theorem in this file is WF_def, which shows that the RBNode.WF.mk constructor subsumes the others, by showing that insert and erase satisfy the red-black invariants.

theorem Std.RBNode.All.trivial {α : Type u_1} {p : αProp} (H : ∀ {x : α}, p x) {t : Std.RBNode α} :
theorem Std.RBNode.All_and {α : Type u_1} {p : αProp} {q : αProp} {t : Std.RBNode α} :
Std.RBNode.All (fun (a : α) => p a q a) t Std.RBNode.All p t Std.RBNode.All q t
theorem Std.RBNode.cmpLT.trans :
∀ {α : Sort u_1} {cmp : ααOrdering} {x y z : α}, Std.RBNode.cmpLT cmp x yStd.RBNode.cmpLT cmp y zStd.RBNode.cmpLT cmp x z
theorem Std.RBNode.cmpLT.trans_l {α : Type u_1} {cmp : ααOrdering} {x : α} {y : α} (H : Std.RBNode.cmpLT cmp x y) {t : Std.RBNode α} (h : Std.RBNode.All (fun (x : α) => Std.RBNode.cmpLT cmp y x) t) :
Std.RBNode.All (fun (x_1 : α) => Std.RBNode.cmpLT cmp x x_1) t
theorem Std.RBNode.cmpLT.trans_r {α : Type u_1} {cmp : ααOrdering} {x : α} {y : α} (H : Std.RBNode.cmpLT cmp x y) {a : Std.RBNode α} (h : Std.RBNode.All (fun (x_1 : α) => Std.RBNode.cmpLT cmp x_1 x) a) :
Std.RBNode.All (fun (x : α) => Std.RBNode.cmpLT cmp x y) a
theorem Std.RBNode.cmpEq.lt_congr_left :
∀ {α : Sort u_1} {cmp : ααOrdering} {x y z : α}, Std.RBNode.cmpEq cmp x y(Std.RBNode.cmpLT cmp x z Std.RBNode.cmpLT cmp y z)
theorem Std.RBNode.cmpEq.lt_congr_right :
∀ {α : Sort u_1} {cmp : ααOrdering} {y z x : α}, Std.RBNode.cmpEq cmp y z(Std.RBNode.cmpLT cmp x y Std.RBNode.cmpLT cmp x z)
theorem Std.RBNode.Ordered.balance1 {α : Type u_1} {cmp : ααOrdering} {l : Std.RBNode α} {v : α} {r : Std.RBNode α} (lv : Std.RBNode.All (fun (x : α) => Std.RBNode.cmpLT cmp x v) l) (vr : Std.RBNode.All (fun (x : α) => Std.RBNode.cmpLT cmp v x) r) (hl : Std.RBNode.Ordered cmp l) (hr : Std.RBNode.Ordered cmp r) :

The balance1 function preserves the ordering invariants.

@[simp]
theorem Std.RBNode.balance1_All {α : Type u_1} {p : αProp} {l : Std.RBNode α} {v : α} {r : Std.RBNode α} :
theorem Std.RBNode.Ordered.balance2 {α : Type u_1} {cmp : ααOrdering} {l : Std.RBNode α} {v : α} {r : Std.RBNode α} (lv : Std.RBNode.All (fun (x : α) => Std.RBNode.cmpLT cmp x v) l) (vr : Std.RBNode.All (fun (x : α) => Std.RBNode.cmpLT cmp v x) r) (hl : Std.RBNode.Ordered cmp l) (hr : Std.RBNode.Ordered cmp r) :

The balance2 function preserves the ordering invariants.

@[simp]
theorem Std.RBNode.balance2_All {α : Type u_1} {p : αProp} {l : Std.RBNode α} {v : α} {r : Std.RBNode α} :
theorem Std.RBNode.insert_setBlack {α : Type u_1} {cmp : ααOrdering} {v : α} {t : Std.RBNode α} :
theorem Std.RBNode.All.ins {α : Type u_1} {p : αProp} {cmp : ααOrdering} {x : α} {t : Std.RBNode α} (h₁ : p x) (h₂ : Std.RBNode.All p t) :
theorem Std.RBNode.Ordered.ins {α : Type u_1} {cmp : ααOrdering} {x : α} {t : Std.RBNode α} :

The ins function preserves the ordering invariants.

theorem Std.RBNode.Ordered.insert :
∀ {α : Type u_1} {cmp : ααOrdering} {t : Std.RBNode α} {v : α}, Std.RBNode.Ordered cmp tStd.RBNode.Ordered cmp (Std.RBNode.insert cmp t v)

The insert function preserves the ordering invariants.

inductive Std.RBNode.RedRed (p : Prop) {α : Type u_1} :
Std.RBNode αNatProp

The red-red invariant is a weakening of the red-black balance invariant which allows the root to be red with red children, but does not allow any other violations. It occurs as a temporary condition in the insert and erase functions.

The p parameter allows the .redred case to be dependent on an additional condition. If it is false, then this is equivalent to the usual red-black invariant.

Instances For
    theorem Std.RBNode.RedRed.of_false {p : Prop} :
    ∀ {α : Type u_1} {t : Std.RBNode α} {n : Nat}, ¬pStd.RBNode.RedRed p t n∃ (c : Std.RBColor), Std.RBNode.Balanced t c n

    When p is false, the red-red case is impossible so the tree is balanced.

    theorem Std.RBNode.RedRed.of_red {p : Prop} :
    ∀ {α : Type u_1} {a : Std.RBNode α} {x : α} {b : Std.RBNode α} {n : Nat}, Std.RBNode.RedRed p (Std.RBNode.node Std.RBColor.red a x b) n∃ (c₁ : Std.RBColor), ∃ (c₂ : Std.RBColor), Std.RBNode.Balanced a c₁ n Std.RBNode.Balanced b c₂ n

    A red node with the red-red invariant has balanced children.

    theorem Std.RBNode.RedRed.imp {p : Prop} {q : Prop} :
    ∀ {α : Type u_1} {t : Std.RBNode α} {n : Nat}, (pq)Std.RBNode.RedRed p t nStd.RBNode.RedRed q t n

    The red-red invariant is monotonic in p.

    theorem Std.RBNode.RedRed.setBlack :
    ∀ {α : Type u_1} {t : Std.RBNode α} {p : Prop} {n : Nat}, Std.RBNode.RedRed p t n∃ (n' : Nat), Std.RBNode.Balanced (Std.RBNode.setBlack t) Std.RBColor.black n'

    If t has the red-red invariant, then setting the root to black yields a balanced tree.

    theorem Std.RBNode.RedRed.balance1 {α : Type u_1} {p : Prop} {n : Nat} {c : Std.RBColor} {l : Std.RBNode α} {v : α} {r : Std.RBNode α} (hl : Std.RBNode.RedRed p l n) (hr : Std.RBNode.Balanced r c n) :

    The balance1 function repairs the balance invariant when the first argument is red-red.

    theorem Std.RBNode.RedRed.balance2 {α : Type u_1} {c : Std.RBColor} {n : Nat} {p : Prop} {l : Std.RBNode α} {v : α} {r : Std.RBNode α} (hl : Std.RBNode.Balanced l c n) (hr : Std.RBNode.RedRed p r n) :

    The balance2 function repairs the balance invariant when the second argument is red-red.

    theorem Std.RBNode.balance1_eq {α : Type u_1} {c : Std.RBColor} {n : Nat} {l : Std.RBNode α} {v : α} {r : Std.RBNode α} (hl : Std.RBNode.Balanced l c n) :

    The balance1 function does nothing if the first argument is already balanced.

    theorem Std.RBNode.balance2_eq {α : Type u_1} {c : Std.RBColor} {n : Nat} {l : Std.RBNode α} {v : α} {r : Std.RBNode α} (hr : Std.RBNode.Balanced r c n) :

    The balance2 function does nothing if the second argument is already balanced.

    insert #

    theorem Std.RBNode.Balanced.ins {α : Type u_1} {c : Std.RBColor} {n : Nat} (cmp : ααOrdering) (v : α) {t : Std.RBNode α} (h : Std.RBNode.Balanced t c n) :

    The balance invariant of the ins function. The result of inserting into the tree either yields a balanced tree, or a tree which is almost balanced except that it has a red-red violation at the root.

    theorem Std.RBNode.Balanced.insert {α : Type u_1} {c : Std.RBColor} {n : Nat} {cmp : ααOrdering} {v : α} {t : Std.RBNode α} (h : Std.RBNode.Balanced t c n) :
    ∃ (c' : Std.RBColor), ∃ (n' : Nat), Std.RBNode.Balanced (Std.RBNode.insert cmp t v) c' n'

    The insert function is balanced if the input is balanced. (We lose track of both the color and the black-height of the result, so this is only suitable for use on the root of the tree.)

    theorem Std.RBNode.All.setRed {α : Type u_1} {p : αProp} {t : Std.RBNode α} (h : Std.RBNode.All p t) :
    theorem Std.RBNode.Ordered.setRed {α : Type u_1} {cmp : ααOrdering} {t : Std.RBNode α} :

    The setRed function preserves the ordering invariants.

    theorem Std.RBNode.All.balLeft :
    ∀ {α : Type u_1} {p : αProp} {l : Std.RBNode α} {v : α} {r : Std.RBNode α}, Std.RBNode.All p lp vStd.RBNode.All p rStd.RBNode.All p (Std.RBNode.balLeft l v r)
    theorem Std.RBNode.Ordered.balLeft {α : Type u_1} {cmp : ααOrdering} {l : Std.RBNode α} {v : α} {r : Std.RBNode α} (lv : Std.RBNode.All (fun (x : α) => Std.RBNode.cmpLT cmp x v) l) (vr : Std.RBNode.All (fun (x : α) => Std.RBNode.cmpLT cmp v x) r) (hl : Std.RBNode.Ordered cmp l) (hr : Std.RBNode.Ordered cmp r) :

    The balLeft function preserves the ordering invariants.

    theorem Std.RBNode.Balanced.balLeft :
    ∀ {α : Type u_1} {l : Std.RBNode α} {v : α} {r : Std.RBNode α} {cr : Std.RBColor} {n : Nat}, Std.RBNode.RedRed True l nStd.RBNode.Balanced r cr (n + 1)Std.RBNode.RedRed (cr = Std.RBColor.red) (Std.RBNode.balLeft l v r) (n + 1)

    The balancing properties of the balLeft function.

    theorem Std.RBNode.All.balRight :
    ∀ {α : Type u_1} {p : αProp} {l : Std.RBNode α} {v : α} {r : Std.RBNode α}, Std.RBNode.All p lp vStd.RBNode.All p rStd.RBNode.All p (Std.RBNode.balRight l v r)
    theorem Std.RBNode.Ordered.balRight {α : Type u_1} {cmp : ααOrdering} {l : Std.RBNode α} {v : α} {r : Std.RBNode α} (lv : Std.RBNode.All (fun (x : α) => Std.RBNode.cmpLT cmp x v) l) (vr : Std.RBNode.All (fun (x : α) => Std.RBNode.cmpLT cmp v x) r) (hl : Std.RBNode.Ordered cmp l) (hr : Std.RBNode.Ordered cmp r) :

    The balRight function preserves the ordering invariants.

    theorem Std.RBNode.Balanced.balRight :
    ∀ {α : Type u_1} {l : Std.RBNode α} {v : α} {r : Std.RBNode α} {cl : Std.RBColor} {n : Nat}, Std.RBNode.Balanced l cl (n + 1)Std.RBNode.RedRed True r nStd.RBNode.RedRed (cl = Std.RBColor.red) (Std.RBNode.balRight l v r) (n + 1)

    The balancing properties of the balRight function.

    theorem Std.RBNode.All.append :
    ∀ {α : Type u_1} {l r : Std.RBNode α} {p : αProp}, Std.RBNode.All p lStd.RBNode.All p rStd.RBNode.All p (Std.RBNode.append l r)
    theorem Std.RBNode.Ordered.append {α : Type u_1} {cmp : ααOrdering} {l : Std.RBNode α} {v : α} {r : Std.RBNode α} (lv : Std.RBNode.All (fun (x : α) => Std.RBNode.cmpLT cmp x v) l) (vr : Std.RBNode.All (fun (x : α) => Std.RBNode.cmpLT cmp v x) r) (hl : Std.RBNode.Ordered cmp l) (hr : Std.RBNode.Ordered cmp r) :

    The append function preserves the ordering invariants.

    theorem Std.RBNode.Balanced.append {α : Type u_1} {c₁ : Std.RBColor} {n : Nat} {c₂ : Std.RBColor} {l : Std.RBNode α} {r : Std.RBNode α} (hl : Std.RBNode.Balanced l c₁ n) (hr : Std.RBNode.Balanced r c₂ n) :

    The balance properties of the append function.

    erase #

    def Std.RBNode.DelProp {α : Type u_1} (p : Std.RBColor) (t : Std.RBNode α) (n : Nat) :

    The invariant of the del function.

    • If the input tree is black, then the result of deletion is a red-red tree with black-height lowered by 1.
    • If the input tree is red or nil, then the result of deletion is a balanced tree with some color and the same black-height.
    Equations
    Instances For
      theorem Std.RBNode.DelProp.redred {c : Std.RBColor} :
      ∀ {α : Type u_1} {t : Std.RBNode α} {n : Nat}, Std.RBNode.DelProp c t n∃ (n' : Nat), Std.RBNode.RedRed (c = Std.RBColor.black) t n'

      The DelProp property is a strengthened version of the red-red invariant.

      theorem Std.RBNode.All.del {α : Type u_1} {p : αProp} {cut : αOrdering} {t : Std.RBNode α} :
      theorem Std.RBNode.Ordered.del {α : Type u_1} {cmp : ααOrdering} {cut : αOrdering} {t : Std.RBNode α} :

      The del function preserves the ordering invariants.

      theorem Std.RBNode.Balanced.del {α : Type u_1} {c : Std.RBColor} {n : Nat} {cut : αOrdering} {t : Std.RBNode α} (h : Std.RBNode.Balanced t c n) :

      The del function has the DelProp property.

      theorem Std.RBNode.Ordered.erase {α : Type u_1} {cmp : ααOrdering} {cut : αOrdering} {t : Std.RBNode α} (h : Std.RBNode.Ordered cmp t) :

      The erase function preserves the ordering invariants.

      theorem Std.RBNode.Balanced.erase {α : Type u_1} {c : Std.RBColor} {n : Nat} {cut : αOrdering} {t : Std.RBNode α} (h : Std.RBNode.Balanced t c n) :

      The erase function preserves the balance invariants.

      theorem Std.RBNode.WF.out {α : Type u_1} {cmp : ααOrdering} {t : Std.RBNode α} (h : Std.RBNode.WF cmp t) :
      Std.RBNode.Ordered cmp t ∃ (c : Std.RBColor), ∃ (n : Nat), Std.RBNode.Balanced t c n

      The well-formedness invariant implies the ordering and balance properties.

      @[simp]
      theorem Std.RBNode.WF_iff {α : Type u_1} {cmp : ααOrdering} {t : Std.RBNode α} :

      The well-formedness invariant for a red-black tree is exactly the mk constructor, because the other constructors of WF are redundant.

      theorem Std.RBNode.Balanced.map {α : Type u_1} {c : Std.RBColor} {n : Nat} :
      ∀ {α_1 : Type u_2} {f : αα_1} {t : Std.RBNode α}, Std.RBNode.Balanced t c nStd.RBNode.Balanced (Std.RBNode.map f t) c n

      The map function preserves the balance invariants.

      class Std.RBNode.IsMonotone {α : Sort u_1} {β : Sort u_2} (cmpα : ααOrdering) (cmpβ : ββOrdering) (f : αβ) :

      The property of a map function f which ensures the map operation is valid.

      Instances
        theorem Std.RBNode.All.map {α : Type u_1} {β : Type u_2} {p : αProp} {q : βProp} {f : αβ} (H : ∀ {x : α}, p xq (f x)) {t : Std.RBNode α} :

        Sufficient condition for map to preserve an All quantifier.

        theorem Std.RBNode.Ordered.map {α : Type u_1} {β : Type u_2} {cmpα : ααOrdering} {cmpβ : ββOrdering} (f : αβ) [Std.RBSet.IsMonotone cmpα cmpβ f] {t : Std.RBNode α} :

        The map function preserves the order invariants if f is monotone.

        @[inline]
        def Std.RBSet.map {α : Type u_1} {β : Type u_2} {cmpα : ααOrdering} {cmpβ : ββOrdering} (f : αβ) [Std.RBSet.IsMonotone cmpα cmpβ f] (t : Std.RBSet α cmpα) :
        Std.RBSet β cmpβ

        O(n). Map a function on every value in the tree. This requires IsMonotone on the function in order to preserve the order invariant.

        Equations
        Instances For
          @[inline]
          def Std.RBMap.Imp.mapSnd {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : αβγ) :
          α × βα × γ

          Applies f to the second component. We extract this as a function so that IsMonotone (mapSnd f) can be an instance.

          Equations
          Instances For
            instance Std.RBMap.Imp.instIsMonotoneProdProdByKeyFstByKeyFstMapSnd {α : Type u_1} {β : Type u_2} {γ : Type u_3} (cmp : ααOrdering) (f : αβγ) :
            Equations
            • One or more equations did not get rendered due to their size.
            def Std.RBMap.mapVal {α : Type u_1} {β : Type u_2} {γ : Type u_3} {cmp : ααOrdering} (f : αβγ) (t : Std.RBMap α β cmp) :
            Std.RBMap α γ cmp

            O(n). Map a function on the values in the map.

            Equations
            Instances For