The arguments to the simpa family tactics.
Equations
- One or more equations did not get rendered due to their size.
Instances For
This is a "finishing" tactic modification of simp. It has two forms.
simpa [rules, ⋯] using ewill simplify the goal and the type ofeusingrules, then try to close the goal usinge.
Simplifying the type of e makes it more likely to match the goal
(which has also been simplified). This construction also tends to be
more robust under changes to the simp lemma set.
simpa [rules, ⋯]will simplify the goal and the type of a hypothesisthisif present in the context, then try to close the goal using theassumptiontactic.
#TODO: implement ?
Equations
- One or more equations did not get rendered due to their size.
Instances For
This is a "finishing" tactic modification of simp. It has two forms.
simpa [rules, ⋯] using ewill simplify the goal and the type ofeusingrules, then try to close the goal usinge.
Simplifying the type of e makes it more likely to match the goal
(which has also been simplified). This construction also tends to be
more robust under changes to the simp lemma set.
simpa [rules, ⋯]will simplify the goal and the type of a hypothesisthisif present in the context, then try to close the goal using theassumptiontactic.
#TODO: implement ?
Equations
- One or more equations did not get rendered due to their size.
Instances For
This is a "finishing" tactic modification of simp. It has two forms.
simpa [rules, ⋯] using ewill simplify the goal and the type ofeusingrules, then try to close the goal usinge.
Simplifying the type of e makes it more likely to match the goal
(which has also been simplified). This construction also tends to be
more robust under changes to the simp lemma set.
simpa [rules, ⋯]will simplify the goal and the type of a hypothesisthisif present in the context, then try to close the goal using theassumptiontactic.
#TODO: implement ?
Equations
- One or more equations did not get rendered due to their size.
Instances For
This is a "finishing" tactic modification of simp. It has two forms.
simpa [rules, ⋯] using ewill simplify the goal and the type ofeusingrules, then try to close the goal usinge.
Simplifying the type of e makes it more likely to match the goal
(which has also been simplified). This construction also tends to be
more robust under changes to the simp lemma set.
simpa [rules, ⋯]will simplify the goal and the type of a hypothesisthisif present in the context, then try to close the goal using theassumptiontactic.
#TODO: implement ?
Equations
- One or more equations did not get rendered due to their size.