Documentation

Mathlib.Data.Fintype.Pi

Fintype instances for pi types #

def Fintype.piFinset {α : Type u_1} [DecidableEq α] [Fintype α] {δ : αType u_2} (t : (a : α) → Finset (δ a)) :
Finset ((a : α) → δ a)

Given for all a : α a finset t a of δ a, then one can define the finset Fintype.piFinset t of all functions taking values in t a for all a. This is the analogue of Finset.pi where the base finset is univ (but formally they are not the same, as there is an additional condition i ∈ Finset.univ in the Finset.pi definition).

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem Fintype.mem_piFinset {α : Type u_1} [DecidableEq α] [Fintype α] {δ : αType u_2} {t : (a : α) → Finset (δ a)} {f : (a : α) → δ a} :
    f Fintype.piFinset t ∀ (a : α), f a t a
    @[simp]
    theorem Fintype.coe_piFinset {α : Type u_1} [DecidableEq α] [Fintype α] {δ : αType u_2} (t : (a : α) → Finset (δ a)) :
    (Fintype.piFinset t) = Set.pi Set.univ fun (a : α) => (t a)
    theorem Fintype.piFinset_subset {α : Type u_1} [DecidableEq α] [Fintype α] {δ : αType u_2} (t₁ : (a : α) → Finset (δ a)) (t₂ : (a : α) → Finset (δ a)) (h : ∀ (a : α), t₁ a t₂ a) :
    @[simp]
    theorem Fintype.piFinset_empty {α : Type u_1} [DecidableEq α] [Fintype α] {δ : αType u_2} [Nonempty α] :
    (Fintype.piFinset fun (x : α) => ) =
    @[simp]
    theorem Fintype.piFinset_singleton {α : Type u_1} [DecidableEq α] [Fintype α] {δ : αType u_2} (f : (i : α) → δ i) :
    (Fintype.piFinset fun (i : α) => {f i}) = {f}
    theorem Fintype.piFinset_subsingleton {α : Type u_1} [DecidableEq α] [Fintype α] {δ : αType u_2} {f : (i : α) → Finset (δ i)} (hf : ∀ (i : α), Set.Subsingleton (f i)) :
    theorem Fintype.piFinset_disjoint_of_disjoint {α : Type u_1} [DecidableEq α] [Fintype α] {δ : αType u_2} (t₁ : (a : α) → Finset (δ a)) (t₂ : (a : α) → Finset (δ a)) {a : α} (h : Disjoint (t₁ a) (t₂ a)) :

    pi #

    instance Pi.fintype {α : Type u_2} {β : αType u_3} [DecidableEq α] [Fintype α] [(a : α) → Fintype (β a)] :
    Fintype ((a : α) → β a)

    A dependent product of fintypes, indexed by a fintype, is a fintype.

    Equations
    @[simp]
    theorem Fintype.piFinset_univ {α : Type u_2} {β : αType u_3} [DecidableEq α] [Fintype α] [(a : α) → Fintype (β a)] :
    (Fintype.piFinset fun (a : α) => Finset.univ) = Finset.univ
    noncomputable instance Function.Embedding.fintype {α : Type u_2} {β : Type u_3} [Fintype α] [Fintype β] :
    Fintype (α β)
    Equations
    @[simp]
    theorem Finset.univ_pi_univ {α : Type u_2} {β : αType u_3} [DecidableEq α] [Fintype α] [(a : α) → Fintype (β a)] :
    (Finset.pi Finset.univ fun (a : α) => Finset.univ) = Finset.univ
    theorem Fin.mem_piFinset_succ_iff {n : } {α : Fin (n + 1)Type u_2} (p : (i : Fin (n + 1)) → α i) (S : (i : Fin (n + 1)) → Finset (α i)) :
    theorem Fin.cons_mem_piFinset_cons_iff {n : } {α : Fin (n + 1)Type u_2} (x : α 0) (xs : (i : Fin n) → α (Fin.succ i)) (S₀ : Finset (α 0)) (Sᵢ : (i : Fin n) → Finset (α (Fin.succ i))) :
    theorem Fin.mem_piFinset_succ_iff' {n : } {α : Fin (n + 1)Type u_2} (p : (i : Fin (n + 1)) → α i) (S : (i : Fin (n + 1)) → Finset (α i)) :
    theorem Fin.snoc_mem_piFinset_snoc_iff {n : } {α : Fin (n + 1)Type u_2} (xs : (i : Fin n) → α (Fin.castSucc i)) (x : α (Fin.last n)) (Sᵢ : (i : Fin n) → Finset (α (Fin.castSucc i))) (Sₙ : Finset (α (Fin.last n))) :