Documentation

Mathlib.Data.Set.Basic

Basic properties of sets #

Sets in Lean are homogeneous; all their elements have the same type. Sets whose elements have type X are thus defined as Set X := X → Prop. Note that this function need not be decidable. The definition is in the core library.

This file provides some basic definitions related to sets and functions not present in the core library, as well as extra lemmas for functions in the core library (empty set, univ, union, intersection, insert, singleton, set-theoretic difference, complement, and powerset).

Note that a set is a term, not a type. There is a coercion from Set α to Type* sending s to the corresponding subtype ↥s.

See also the file SetTheory/ZFC.lean, which contains an encoding of ZFC set theory in Lean.

Main definitions #

Notation used here:

Definitions in the file:

Notation #

Implementation notes #

Tags #

set, sets, subset, subsets, union, intersection, insert, singleton, complement, powerset

Set coercion to a type #

Equations
  • One or more equations did not get rendered due to their size.
instance Set.instHasSSubsetSet {α : Type u} :
Equations
  • Set.instHasSSubsetSet = { SSubset := fun (x x_1 : Set α) => x < x_1 }
@[simp]
theorem Set.top_eq_univ {α : Type u} :
= Set.univ
@[simp]
theorem Set.bot_eq_empty {α : Type u} :
@[simp]
theorem Set.sup_eq_union {α : Type u} :
(fun (x x_1 : Set α) => x x_1) = fun (x x_1 : Set α) => x x_1
@[simp]
theorem Set.inf_eq_inter {α : Type u} :
(fun (x x_1 : Set α) => x x_1) = fun (x x_1 : Set α) => x x_1
@[simp]
theorem Set.le_eq_subset {α : Type u} :
(fun (x x_1 : Set α) => x x_1) = fun (x x_1 : Set α) => x x_1
@[simp]
theorem Set.lt_eq_ssubset {α : Type u} :
(fun (x x_1 : Set α) => x < x_1) = fun (x x_1 : Set α) => x x_1
theorem Set.le_iff_subset {α : Type u} {s : Set α} {t : Set α} :
s t s t
theorem Set.lt_iff_ssubset {α : Type u} {s : Set α} {t : Set α} :
s < t s t
theorem LE.le.subset {α : Type u} {s : Set α} {t : Set α} :
s ts t

Alias of the forward direction of Set.le_iff_subset.

theorem HasSubset.Subset.le {α : Type u} {s : Set α} {t : Set α} :
s ts t

Alias of the reverse direction of Set.le_iff_subset.

theorem LT.lt.ssubset {α : Type u} {s : Set α} {t : Set α} :
s < ts t

Alias of the forward direction of Set.lt_iff_ssubset.

theorem HasSSubset.SSubset.lt {α : Type u} {s : Set α} {t : Set α} :
s ts < t

Alias of the reverse direction of Set.lt_iff_ssubset.

@[reducible]
def Set.Elem {α : Type u} (s : Set α) :

Given the set s, Elem s is the Type of element of s.

Equations
  • s = { x : α // x s }
Instances For
    instance Set.instCoeSortSetType {α : Type u} :
    CoeSort (Set α) (Type u)

    Coercion from a set to the corresponding subtype.

    Equations
    • Set.instCoeSortSetType = { coe := Set.Elem }
    instance Set.PiSetCoe.canLift (ι : Type u) (α : ιType v) [∀ (i : ι), Nonempty (α i)] (s : Set ι) :
    CanLift ((i : s) → α i) ((i : ι) → α i) (fun (f : (i : ι) → α i) (i : s) => f i) fun (x : (i : s) → α i) => True
    Equations
    • One or more equations did not get rendered due to their size.
    instance Set.PiSetCoe.canLift' (ι : Type u) (α : Type v) [Nonempty α] (s : Set ι) :
    CanLift (sα) (ια) (fun (f : ια) (i : s) => f i) fun (x : sα) => True
    Equations
    • (_ : CanLift (sα) (ια) (fun (f : ια) (i : s) => f i) fun (x : sα) => True) = (_ : CanLift (sα) (ια) (fun (f : ια) (i : s) => f i) fun (x : sα) => True)
    instance instCoeTCElem {α : Type u} (s : Set α) :
    CoeTC (s) α
    Equations
    theorem Set.coe_eq_subtype {α : Type u} (s : Set α) :
    s = { x : α // x s }
    @[simp]
    theorem Set.coe_setOf {α : Type u} (p : αProp) :
    {x : α | p x} = { x : α // p x }
    theorem SetCoe.forall {α : Type u} {s : Set α} {p : sProp} :
    (∀ (x : s), p x) ∀ (x : α) (h : x s), p { val := x, property := h }
    theorem SetCoe.exists {α : Type u} {s : Set α} {p : sProp} :
    (∃ (x : s), p x) ∃ (x : α) (h : x s), p { val := x, property := h }
    theorem SetCoe.exists' {α : Type u} {s : Set α} {p : (x : α) → x sProp} :
    (∃ (x : α) (h : x s), p x h) ∃ (x : s), p x (_ : x s)
    theorem SetCoe.forall' {α : Type u} {s : Set α} {p : (x : α) → x sProp} :
    (∀ (x : α) (h : x s), p x h) ∀ (x : s), p x (_ : x s)
    @[simp]
    theorem set_coe_cast {α : Type u} {s : Set α} {t : Set α} (H' : s = t) (H : s = t) (x : s) :
    cast H x = { val := x, property := (_ : x t) }
    theorem SetCoe.ext {α : Type u} {s : Set α} {a : s} {b : s} :
    a = ba = b
    theorem SetCoe.ext_iff {α : Type u} {s : Set α} {a : s} {b : s} :
    a = b a = b
    theorem Subtype.mem {α : Type u_1} {s : Set α} (p : s) :
    p s

    See also Subtype.prop

    theorem Eq.subset {α : Type u_1} {s : Set α} {t : Set α} :
    s = ts t

    Duplicate of Eq.subset', which currently has elaboration problems.

    instance Set.instInhabitedSet {α : Type u} :
    Equations
    • Set.instInhabitedSet = { default := }
    theorem Set.ext_iff {α : Type u} {s : Set α} {t : Set α} :
    s = t ∀ (x : α), x s x t
    theorem Set.mem_of_mem_of_subset {α : Type u} {x : α} {s : Set α} {t : Set α} (hx : x s) (h : s t) :
    x t
    theorem Set.forall_in_swap {α : Type u} {β : Type v} {s : Set α} {p : αβProp} :
    (as, ∀ (b : β), p a b) ∀ (b : β), as, p a b

    Lemmas about mem and setOf #

    @[simp]
    theorem Set.mem_setOf_eq {α : Type u} {x : α} {p : αProp} :
    (x {y : α | p y}) = p x
    theorem Set.mem_setOf {α : Type u} {a : α} {p : αProp} :
    a {x : α | p x} p a
    theorem Membership.mem.out {α : Type u} {p : αProp} {a : α} (h : a {x : α | p x}) :
    p a

    If h : a ∈ {x | p x} then h.out : p x. These are definitionally equal, but this can nevertheless be useful for various reasons, e.g. to apply further projection notation or in an argument to simp.

    theorem Set.nmem_setOf_iff {α : Type u} {a : α} {p : αProp} :
    a{x : α | p x} ¬p a
    @[simp]
    theorem Set.setOf_mem_eq {α : Type u} {s : Set α} :
    {x : α | x s} = s
    theorem Set.setOf_set {α : Type u} {s : Set α} :
    setOf s = s
    theorem Set.setOf_app_iff {α : Type u} {p : αProp} {x : α} :
    setOf (fun (x : α) => p x) x p x
    theorem Set.mem_def {α : Type u} {a : α} {s : Set α} :
    a s s a
    @[simp]
    theorem Set.setOf_subset_setOf {α : Type u} {p : αProp} {q : αProp} :
    {a : α | p a} {a : α | q a} ∀ (a : α), p aq a
    theorem Set.setOf_and {α : Type u} {p : αProp} {q : αProp} :
    {a : α | p a q a} = {a : α | p a} {a : α | q a}
    theorem Set.setOf_or {α : Type u} {p : αProp} {q : αProp} :
    {a : α | p a q a} = {a : α | p a} {a : α | q a}

    Subset and strict subset relations #

    instance Set.instIsReflSetSubsetInstHasSubsetSet {α : Type u} :
    IsRefl (Set α) fun (x x_1 : Set α) => x x_1
    Equations
    instance Set.instIsTransSetSubsetInstHasSubsetSet {α : Type u} :
    IsTrans (Set α) fun (x x_1 : Set α) => x x_1
    Equations
    instance Set.instTransSetSubsetInstHasSubsetSet {α : Type u} :
    Trans (fun (x x_1 : Set α) => x x_1) (fun (x x_1 : Set α) => x x_1) fun (x x_1 : Set α) => x x_1
    Equations
    • Set.instTransSetSubsetInstHasSubsetSet = let_fun this := inferInstance; this
    instance Set.instIsAntisymmSetSubsetInstHasSubsetSet {α : Type u} :
    IsAntisymm (Set α) fun (x x_1 : Set α) => x x_1
    Equations
    instance Set.instIsIrreflSetSSubsetInstHasSSubsetSet {α : Type u} :
    IsIrrefl (Set α) fun (x x_1 : Set α) => x x_1
    Equations
    instance Set.instIsTransSetSSubsetInstHasSSubsetSet {α : Type u} :
    IsTrans (Set α) fun (x x_1 : Set α) => x x_1
    Equations
    instance Set.instTransSetSSubsetInstHasSSubsetSet {α : Type u} :
    Trans (fun (x x_1 : Set α) => x x_1) (fun (x x_1 : Set α) => x x_1) fun (x x_1 : Set α) => x x_1
    Equations
    • Set.instTransSetSSubsetInstHasSSubsetSet = let_fun this := inferInstance; this
    instance Set.instTransSetSSubsetInstHasSSubsetSetSubsetInstHasSubsetSet {α : Type u} :
    Trans (fun (x x_1 : Set α) => x x_1) (fun (x x_1 : Set α) => x x_1) fun (x x_1 : Set α) => x x_1
    Equations
    • Set.instTransSetSSubsetInstHasSSubsetSetSubsetInstHasSubsetSet = let_fun this := inferInstance; this
    instance Set.instTransSetSubsetInstHasSubsetSetSSubsetInstHasSSubsetSet {α : Type u} :
    Trans (fun (x x_1 : Set α) => x x_1) (fun (x x_1 : Set α) => x x_1) fun (x x_1 : Set α) => x x_1
    Equations
    • Set.instTransSetSubsetInstHasSubsetSetSSubsetInstHasSSubsetSet = let_fun this := inferInstance; this
    instance Set.instIsAsymmSetSSubsetInstHasSSubsetSet {α : Type u} :
    IsAsymm (Set α) fun (x x_1 : Set α) => x x_1
    Equations
    instance Set.instIsNonstrictStrictOrderSetSubsetInstHasSubsetSetSSubsetInstHasSSubsetSet {α : Type u} :
    IsNonstrictStrictOrder (Set α) (fun (x x_1 : Set α) => x x_1) fun (x x_1 : Set α) => x x_1
    Equations
    • One or more equations did not get rendered due to their size.
    theorem Set.subset_def {α : Type u} {s : Set α} {t : Set α} :
    (s t) = xs, x t
    theorem Set.ssubset_def {α : Type u} {s : Set α} {t : Set α} :
    (s t) = (s t ¬t s)
    theorem Set.Subset.refl {α : Type u} (a : Set α) :
    a a
    theorem Set.Subset.rfl {α : Type u} {s : Set α} :
    s s
    theorem Set.Subset.trans {α : Type u} {a : Set α} {b : Set α} {c : Set α} (ab : a b) (bc : b c) :
    a c
    theorem Set.mem_of_eq_of_mem {α : Type u} {x : α} {y : α} {s : Set α} (hx : x = y) (h : y s) :
    x s
    theorem Set.Subset.antisymm {α : Type u} {a : Set α} {b : Set α} (h₁ : a b) (h₂ : b a) :
    a = b
    theorem Set.Subset.antisymm_iff {α : Type u} {a : Set α} {b : Set α} :
    a = b a b b a
    theorem Set.eq_of_subset_of_subset {α : Type u} {a : Set α} {b : Set α} :
    a bb aa = b
    theorem Set.mem_of_subset_of_mem {α : Type u} {s₁ : Set α} {s₂ : Set α} {a : α} (h : s₁ s₂) :
    a s₁a s₂
    theorem Set.not_mem_subset {α : Type u} {a : α} {s : Set α} {t : Set α} (h : s t) :
    atas
    theorem Set.not_subset {α : Type u} {s : Set α} {t : Set α} :
    ¬s t ∃ a ∈ s, at

    Definition of strict subsets s ⊂ t and basic properties. #

    theorem Set.eq_or_ssubset_of_subset {α : Type u} {s : Set α} {t : Set α} (h : s t) :
    s = t s t
    theorem Set.exists_of_ssubset {α : Type u} {s : Set α} {t : Set α} (h : s t) :
    ∃ x ∈ t, xs
    theorem Set.ssubset_iff_subset_ne {α : Type u} {s : Set α} {t : Set α} :
    s t s t s t
    theorem Set.ssubset_iff_of_subset {α : Type u} {s : Set α} {t : Set α} (h : s t) :
    s t ∃ x ∈ t, xs
    theorem Set.ssubset_of_ssubset_of_subset {α : Type u} {s₁ : Set α} {s₂ : Set α} {s₃ : Set α} (hs₁s₂ : s₁ s₂) (hs₂s₃ : s₂ s₃) :
    s₁ s₃
    theorem Set.ssubset_of_subset_of_ssubset {α : Type u} {s₁ : Set α} {s₂ : Set α} {s₃ : Set α} (hs₁s₂ : s₁ s₂) (hs₂s₃ : s₂ s₃) :
    s₁ s₃
    theorem Set.not_mem_empty {α : Type u} (x : α) :
    x
    theorem Set.not_not_mem {α : Type u} {a : α} {s : Set α} :
    ¬as a s

    Non-empty sets #

    theorem Set.nonempty_coe_sort {α : Type u} {s : Set α} :
    theorem Set.Nonempty.coe_sort {α : Type u} {s : Set α} :

    Alias of the reverse direction of Set.nonempty_coe_sort.

    theorem Set.nonempty_def {α : Type u} {s : Set α} :
    Set.Nonempty s ∃ (x : α), x s
    theorem Set.nonempty_of_mem {α : Type u} {s : Set α} {x : α} (h : x s) :
    noncomputable def Set.Nonempty.some {α : Type u} {s : Set α} (h : Set.Nonempty s) :
    α

    Extract a witness from s.Nonempty. This function might be used instead of case analysis on the argument. Note that it makes a proof depend on the Classical.choice axiom.

    Equations
    Instances For
      theorem Set.Nonempty.some_mem {α : Type u} {s : Set α} (h : Set.Nonempty s) :
      theorem Set.Nonempty.mono {α : Type u} {s : Set α} {t : Set α} (ht : s t) (hs : Set.Nonempty s) :
      theorem Set.nonempty_of_not_subset {α : Type u} {s : Set α} {t : Set α} (h : ¬s t) :
      theorem Set.nonempty_of_ssubset {α : Type u} {s : Set α} {t : Set α} (ht : s t) :
      theorem Set.Nonempty.of_diff {α : Type u} {s : Set α} {t : Set α} (h : Set.Nonempty (s \ t)) :
      theorem Set.nonempty_of_ssubset' {α : Type u} {s : Set α} {t : Set α} (ht : s t) :
      theorem Set.Nonempty.inl {α : Type u} {s : Set α} {t : Set α} (hs : Set.Nonempty s) :
      theorem Set.Nonempty.inr {α : Type u} {s : Set α} {t : Set α} (ht : Set.Nonempty t) :
      @[simp]
      theorem Set.union_nonempty {α : Type u} {s : Set α} {t : Set α} :
      theorem Set.Nonempty.left {α : Type u} {s : Set α} {t : Set α} (h : Set.Nonempty (s t)) :
      theorem Set.Nonempty.right {α : Type u} {s : Set α} {t : Set α} (h : Set.Nonempty (s t)) :
      theorem Set.inter_nonempty {α : Type u} {s : Set α} {t : Set α} :
      Set.Nonempty (s t) ∃ x ∈ s, x t
      theorem Set.inter_nonempty_iff_exists_left {α : Type u} {s : Set α} {t : Set α} :
      Set.Nonempty (s t) ∃ x ∈ s, x t
      theorem Set.inter_nonempty_iff_exists_right {α : Type u} {s : Set α} {t : Set α} :
      Set.Nonempty (s t) ∃ x ∈ t, x s
      @[simp]
      theorem Set.univ_nonempty {α : Type u} [Nonempty α] :
      Set.Nonempty Set.univ
      theorem Set.Nonempty.to_subtype {α : Type u} {s : Set α} :
      theorem Set.Nonempty.to_type {α : Type u} {s : Set α} :
      instance Set.univ.nonempty {α : Type u} [Nonempty α] :
      Nonempty Set.univ
      Equations

      Lemmas about the empty set #

      theorem Set.empty_def {α : Type u} :
      = {_x : α | False}
      @[simp]
      theorem Set.mem_empty_iff_false {α : Type u} (x : α) :
      @[simp]
      theorem Set.setOf_false {α : Type u} :
      {_a : α | False} =
      @[simp]
      theorem Set.setOf_bot {α : Type u} :
      {_x : α | } =
      @[simp]
      theorem Set.empty_subset {α : Type u} (s : Set α) :
      theorem Set.subset_empty_iff {α : Type u} {s : Set α} :
      theorem Set.eq_empty_iff_forall_not_mem {α : Type u} {s : Set α} :
      s = ∀ (x : α), xs
      theorem Set.eq_empty_of_forall_not_mem {α : Type u} {s : Set α} (h : ∀ (x : α), xs) :
      s =
      theorem Set.eq_empty_of_subset_empty {α : Type u} {s : Set α} :
      s s =
      theorem Set.eq_empty_of_isEmpty {α : Type u} [IsEmpty α] (s : Set α) :
      s =
      instance Set.uniqueEmpty {α : Type u} [IsEmpty α] :
      Unique (Set α)

      There is exactly one set of a type that is empty.

      Equations
      • Set.uniqueEmpty = { toInhabited := { default := }, uniq := (_ : ∀ (s : Set α), s = ) }
      theorem Set.Nonempty.ne_empty {α : Type u} {s : Set α} :

      Alias of the forward direction of Set.nonempty_iff_ne_empty.


      See also Set.not_nonempty_iff_eq_empty.

      theorem Set.isEmpty_coe_sort {α : Type u} {s : Set α} :
      IsEmpty s s =
      theorem Set.subset_eq_empty {α : Type u} {s : Set α} {t : Set α} (h : t s) (e : s = ) :
      t =
      theorem Set.ball_empty_iff {α : Type u} {p : αProp} :
      (x, p x) True
      @[simp]
      theorem Set.empty_ssubset {α : Type u} {s : Set α} :
      theorem Set.Nonempty.empty_ssubset {α : Type u} {s : Set α} :

      Alias of the reverse direction of Set.empty_ssubset.

      Universal set. #

      In Lean @univ α (or univ : Set α) is the set that contains all elements of type α. Mathematically it is the same as α but it has a different type.

      @[simp]
      theorem Set.setOf_true {α : Type u} :
      {_x : α | True} = Set.univ
      @[simp]
      theorem Set.setOf_top {α : Type u} :
      {_x : α | } = Set.univ
      @[simp]
      theorem Set.mem_univ {α : Type u} (x : α) :
      x Set.univ
      @[simp]
      theorem Set.univ_eq_empty_iff {α : Type u} :
      Set.univ = IsEmpty α
      theorem Set.empty_ne_univ {α : Type u} [Nonempty α] :
      Set.univ
      @[simp]
      theorem Set.subset_univ {α : Type u} (s : Set α) :
      s Set.univ
      theorem Set.univ_subset_iff {α : Type u} {s : Set α} :
      Set.univ s s = Set.univ
      theorem Set.eq_univ_of_univ_subset {α : Type u} {s : Set α} :
      Set.univ ss = Set.univ

      Alias of the forward direction of Set.univ_subset_iff.

      theorem Set.eq_univ_iff_forall {α : Type u} {s : Set α} :
      s = Set.univ ∀ (x : α), x s
      theorem Set.eq_univ_of_forall {α : Type u} {s : Set α} :
      (∀ (x : α), x s)s = Set.univ
      theorem Set.Nonempty.eq_univ {α : Type u} {s : Set α} [Subsingleton α] :
      Set.Nonempty ss = Set.univ
      theorem Set.eq_univ_of_subset {α : Type u} {s : Set α} {t : Set α} (h : s t) (hs : s = Set.univ) :
      t = Set.univ
      theorem Set.exists_mem_of_nonempty (α : Type u_1) [Nonempty α] :
      ∃ (x : α), x Set.univ
      theorem Set.ne_univ_iff_exists_not_mem {α : Type u_1} (s : Set α) :
      s Set.univ ∃ (a : α), as
      theorem Set.not_subset_iff_exists_mem_not_mem {α : Type u_1} {s : Set α} {t : Set α} :
      ¬s t ∃ x ∈ s, xt
      theorem Set.univ_unique {α : Type u} [Unique α] :
      Set.univ = {default}
      theorem Set.ssubset_univ_iff {α : Type u} {s : Set α} :
      s Set.univ s Set.univ
      Equations

      Lemmas about union #

      theorem Set.union_def {α : Type u} {s₁ : Set α} {s₂ : Set α} :
      s₁ s₂ = {a : α | a s₁ a s₂}
      theorem Set.mem_union_left {α : Type u} {x : α} {a : Set α} (b : Set α) :
      x ax a b
      theorem Set.mem_union_right {α : Type u} {x : α} {b : Set α} (a : Set α) :
      x bx a b
      theorem Set.mem_or_mem_of_mem_union {α : Type u} {x : α} {a : Set α} {b : Set α} (H : x a b) :
      x a x b
      theorem Set.MemUnion.elim {α : Type u} {x : α} {a : Set α} {b : Set α} {P : Prop} (H₁ : x a b) (H₂ : x aP) (H₃ : x bP) :
      P
      @[simp]
      theorem Set.mem_union {α : Type u} (x : α) (a : Set α) (b : Set α) :
      x a b x a x b
      @[simp]
      theorem Set.union_self {α : Type u} (a : Set α) :
      a a = a
      @[simp]
      theorem Set.union_empty {α : Type u} (a : Set α) :
      a = a
      @[simp]
      theorem Set.empty_union {α : Type u} (a : Set α) :
      a = a
      theorem Set.union_comm {α : Type u} (a : Set α) (b : Set α) :
      a b = b a
      theorem Set.union_assoc {α : Type u} (a : Set α) (b : Set α) (c : Set α) :
      a b c = a (b c)
      instance Set.union_isAssoc {α : Type u} :
      IsAssociative (Set α) fun (x x_1 : Set α) => x x_1
      Equations
      instance Set.union_isComm {α : Type u} :
      IsCommutative (Set α) fun (x x_1 : Set α) => x x_1
      Equations
      theorem Set.union_left_comm {α : Type u} (s₁ : Set α) (s₂ : Set α) (s₃ : Set α) :
      s₁ (s₂ s₃) = s₂ (s₁ s₃)
      theorem Set.union_right_comm {α : Type u} (s₁ : Set α) (s₂ : Set α) (s₃ : Set α) :
      s₁ s₂ s₃ = s₁ s₃ s₂
      @[simp]
      theorem Set.union_eq_left {α : Type u} {s : Set α} {t : Set α} :
      s t = s t s
      @[simp]
      theorem Set.union_eq_right {α : Type u} {s : Set α} {t : Set α} :
      s t = t s t
      theorem Set.union_eq_self_of_subset_left {α : Type u} {s : Set α} {t : Set α} (h : s t) :
      s t = t
      theorem Set.union_eq_self_of_subset_right {α : Type u} {s : Set α} {t : Set α} (h : t s) :
      s t = s
      @[simp]
      theorem Set.subset_union_left {α : Type u} (s : Set α) (t : Set α) :
      s s t
      @[simp]
      theorem Set.subset_union_right {α : Type u} (s : Set α) (t : Set α) :
      t s t
      theorem Set.union_subset {α : Type u} {s : Set α} {t : Set α} {r : Set α} (sr : s r) (tr : t r) :
      s t r
      @[simp]
      theorem Set.union_subset_iff {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      s t u s u t u
      theorem Set.union_subset_union {α : Type u} {s₁ : Set α} {s₂ : Set α} {t₁ : Set α} {t₂ : Set α} (h₁ : s₁ s₂) (h₂ : t₁ t₂) :
      s₁ t₁ s₂ t₂
      theorem Set.union_subset_union_left {α : Type u} {s₁ : Set α} {s₂ : Set α} (t : Set α) (h : s₁ s₂) :
      s₁ t s₂ t
      theorem Set.union_subset_union_right {α : Type u} (s : Set α) {t₁ : Set α} {t₂ : Set α} (h : t₁ t₂) :
      s t₁ s t₂
      theorem Set.subset_union_of_subset_left {α : Type u} {s : Set α} {t : Set α} (h : s t) (u : Set α) :
      s t u
      theorem Set.subset_union_of_subset_right {α : Type u} {s : Set α} {u : Set α} (h : s u) (t : Set α) :
      s t u
      theorem Set.union_congr_left {α : Type u} {s : Set α} {t : Set α} {u : Set α} (ht : t s u) (hu : u s t) :
      s t = s u
      theorem Set.union_congr_right {α : Type u} {s : Set α} {t : Set α} {u : Set α} (hs : s t u) (ht : t s u) :
      s u = t u
      theorem Set.union_eq_union_iff_left {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      s t = s u t s u u s t
      theorem Set.union_eq_union_iff_right {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      s u = t u s t u t s u
      @[simp]
      theorem Set.union_empty_iff {α : Type u} {s : Set α} {t : Set α} :
      s t = s = t =
      @[simp]
      theorem Set.union_univ {α : Type u} {s : Set α} :
      s Set.univ = Set.univ
      @[simp]
      theorem Set.univ_union {α : Type u} {s : Set α} :
      Set.univ s = Set.univ

      Lemmas about intersection #

      theorem Set.inter_def {α : Type u} {s₁ : Set α} {s₂ : Set α} :
      s₁ s₂ = {a : α | a s₁ a s₂}
      @[simp]
      theorem Set.mem_inter_iff {α : Type u} (x : α) (a : Set α) (b : Set α) :
      x a b x a x b
      theorem Set.mem_inter {α : Type u} {x : α} {a : Set α} {b : Set α} (ha : x a) (hb : x b) :
      x a b
      theorem Set.mem_of_mem_inter_left {α : Type u} {x : α} {a : Set α} {b : Set α} (h : x a b) :
      x a
      theorem Set.mem_of_mem_inter_right {α : Type u} {x : α} {a : Set α} {b : Set α} (h : x a b) :
      x b
      @[simp]
      theorem Set.inter_self {α : Type u} (a : Set α) :
      a a = a
      @[simp]
      theorem Set.inter_empty {α : Type u} (a : Set α) :
      @[simp]
      theorem Set.empty_inter {α : Type u} (a : Set α) :
      theorem Set.inter_comm {α : Type u} (a : Set α) (b : Set α) :
      a b = b a
      theorem Set.inter_assoc {α : Type u} (a : Set α) (b : Set α) (c : Set α) :
      a b c = a (b c)
      instance Set.inter_isAssoc {α : Type u} :
      IsAssociative (Set α) fun (x x_1 : Set α) => x x_1
      Equations
      instance Set.inter_isComm {α : Type u} :
      IsCommutative (Set α) fun (x x_1 : Set α) => x x_1
      Equations
      theorem Set.inter_left_comm {α : Type u} (s₁ : Set α) (s₂ : Set α) (s₃ : Set α) :
      s₁ (s₂ s₃) = s₂ (s₁ s₃)
      theorem Set.inter_right_comm {α : Type u} (s₁ : Set α) (s₂ : Set α) (s₃ : Set α) :
      s₁ s₂ s₃ = s₁ s₃ s₂
      @[simp]
      theorem Set.inter_subset_left {α : Type u} (s : Set α) (t : Set α) :
      s t s
      @[simp]
      theorem Set.inter_subset_right {α : Type u} (s : Set α) (t : Set α) :
      s t t
      theorem Set.subset_inter {α : Type u} {s : Set α} {t : Set α} {r : Set α} (rs : r s) (rt : r t) :
      r s t
      @[simp]
      theorem Set.subset_inter_iff {α : Type u} {s : Set α} {t : Set α} {r : Set α} :
      r s t r s r t
      @[simp]
      theorem Set.inter_eq_left {α : Type u} {s : Set α} {t : Set α} :
      s t = s s t
      @[simp]
      theorem Set.inter_eq_right {α : Type u} {s : Set α} {t : Set α} :
      s t = t t s
      theorem Set.inter_eq_self_of_subset_left {α : Type u} {s : Set α} {t : Set α} :
      s ts t = s
      theorem Set.inter_eq_self_of_subset_right {α : Type u} {s : Set α} {t : Set α} :
      t ss t = t
      theorem Set.inter_congr_left {α : Type u} {s : Set α} {t : Set α} {u : Set α} (ht : s u t) (hu : s t u) :
      s t = s u
      theorem Set.inter_congr_right {α : Type u} {s : Set α} {t : Set α} {u : Set α} (hs : t u s) (ht : s u t) :
      s u = t u
      theorem Set.inter_eq_inter_iff_left {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      s t = s u s u t s t u
      theorem Set.inter_eq_inter_iff_right {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      s u = t u t u s s u t
      @[simp]
      theorem Set.inter_univ {α : Type u} (a : Set α) :
      a Set.univ = a
      @[simp]
      theorem Set.univ_inter {α : Type u} (a : Set α) :
      Set.univ a = a
      theorem Set.inter_subset_inter {α : Type u} {s₁ : Set α} {s₂ : Set α} {t₁ : Set α} {t₂ : Set α} (h₁ : s₁ t₁) (h₂ : s₂ t₂) :
      s₁ s₂ t₁ t₂
      theorem Set.inter_subset_inter_left {α : Type u} {s : Set α} {t : Set α} (u : Set α) (H : s t) :
      s u t u
      theorem Set.inter_subset_inter_right {α : Type u} {s : Set α} {t : Set α} (u : Set α) (H : s t) :
      u s u t
      theorem Set.union_inter_cancel_left {α : Type u} {s : Set α} {t : Set α} :
      (s t) s = s
      theorem Set.union_inter_cancel_right {α : Type u} {s : Set α} {t : Set α} :
      (s t) t = t
      theorem Set.inter_setOf_eq_sep {α : Type u} (s : Set α) (p : αProp) :
      s {a : α | p a} = {a : α | a s p a}
      theorem Set.setOf_inter_eq_sep {α : Type u} (p : αProp) (s : Set α) :
      {a : α | p a} s = {a : α | a s p a}

      Distributivity laws #

      theorem Set.inter_distrib_left {α : Type u} (s : Set α) (t : Set α) (u : Set α) :
      s (t u) = s t s u
      theorem Set.inter_union_distrib_left {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      s (t u) = s t s u
      theorem Set.inter_distrib_right {α : Type u} (s : Set α) (t : Set α) (u : Set α) :
      (s t) u = s u t u
      theorem Set.union_inter_distrib_right {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      (s t) u = s u t u
      theorem Set.union_distrib_left {α : Type u} (s : Set α) (t : Set α) (u : Set α) :
      s t u = (s t) (s u)
      theorem Set.union_inter_distrib_left {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      s t u = (s t) (s u)
      theorem Set.union_distrib_right {α : Type u} (s : Set α) (t : Set α) (u : Set α) :
      s t u = (s u) (t u)
      theorem Set.inter_union_distrib_right {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      s t u = (s u) (t u)
      theorem Set.union_union_distrib_left {α : Type u} (s : Set α) (t : Set α) (u : Set α) :
      s (t u) = s t (s u)
      theorem Set.union_union_distrib_right {α : Type u} (s : Set α) (t : Set α) (u : Set α) :
      s t u = s u (t u)
      theorem Set.inter_inter_distrib_left {α : Type u} (s : Set α) (t : Set α) (u : Set α) :
      s (t u) = s t (s u)
      theorem Set.inter_inter_distrib_right {α : Type u} (s : Set α) (t : Set α) (u : Set α) :
      s t u = s u (t u)
      theorem Set.union_union_union_comm {α : Type u} (s : Set α) (t : Set α) (u : Set α) (v : Set α) :
      s t (u v) = s u (t v)
      theorem Set.inter_inter_inter_comm {α : Type u} (s : Set α) (t : Set α) (u : Set α) (v : Set α) :
      s t (u v) = s u (t v)

      Lemmas about insert #

      insert α s is the set {α} ∪ s.

      theorem Set.insert_def {α : Type u} (x : α) (s : Set α) :
      insert x s = {y : α | y = x y s}
      @[simp]
      theorem Set.subset_insert {α : Type u} (x : α) (s : Set α) :
      s insert x s
      theorem Set.mem_insert {α : Type u} (x : α) (s : Set α) :
      x insert x s
      theorem Set.mem_insert_of_mem {α : Type u} {x : α} {s : Set α} (y : α) :
      x sx insert y s
      theorem Set.eq_or_mem_of_mem_insert {α : Type u} {x : α} {a : α} {s : Set α} :
      x insert a sx = a x s
      theorem Set.mem_of_mem_insert_of_ne {α : Type u} {a : α} {b : α} {s : Set α} :
      b insert a sb ab s
      theorem Set.eq_of_not_mem_of_mem_insert {α : Type u} {a : α} {b : α} {s : Set α} :
      b insert a sbsb = a
      @[simp]
      theorem Set.mem_insert_iff {α : Type u} {x : α} {a : α} {s : Set α} :
      x insert a s x = a x s
      @[simp]
      theorem Set.insert_eq_of_mem {α : Type u} {a : α} {s : Set α} (h : a s) :
      insert a s = s
      theorem Set.ne_insert_of_not_mem {α : Type u} {s : Set α} (t : Set α) {a : α} :
      ass insert a t
      @[simp]
      theorem Set.insert_eq_self {α : Type u} {a : α} {s : Set α} :
      insert a s = s a s
      theorem Set.insert_ne_self {α : Type u} {a : α} {s : Set α} :
      insert a s s as
      theorem Set.insert_subset_iff {α : Type u} {a : α} {s : Set α} {t : Set α} :
      insert a s t a t s t
      theorem Set.insert_subset {α : Type u} {a : α} {s : Set α} {t : Set α} (ha : a t) (hs : s t) :
      insert a s t
      theorem Set.insert_subset_insert {α : Type u} {a : α} {s : Set α} {t : Set α} (h : s t) :
      insert a s insert a t
      @[simp]
      theorem Set.insert_subset_insert_iff {α : Type u} {a : α} {s : Set α} {t : Set α} (ha : as) :
      insert a s insert a t s t
      theorem Set.subset_insert_iff_of_not_mem {α : Type u} {a : α} {s : Set α} {t : Set α} (ha : as) :
      s insert a t s t
      theorem Set.ssubset_iff_insert {α : Type u} {s : Set α} {t : Set α} :
      s t ∃ (a : α) (_ : as), insert a s t
      theorem Set.ssubset_insert {α : Type u} {s : Set α} {a : α} (h : as) :
      s insert a s
      theorem Set.insert_comm {α : Type u} (a : α) (b : α) (s : Set α) :
      insert a (insert b s) = insert b (insert a s)
      theorem Set.insert_idem {α : Type u} (a : α) (s : Set α) :
      insert a (insert a s) = insert a s
      theorem Set.insert_union {α : Type u} {a : α} {s : Set α} {t : Set α} :
      insert a s t = insert a (s t)
      @[simp]
      theorem Set.union_insert {α : Type u} {a : α} {s : Set α} {t : Set α} :
      s insert a t = insert a (s t)
      @[simp]
      theorem Set.insert_nonempty {α : Type u} (a : α) (s : Set α) :
      instance Set.instNonemptyElemInsertSetInstInsertSet {α : Type u} (a : α) (s : Set α) :
      Nonempty (insert a s)
      Equations
      theorem Set.insert_inter_distrib {α : Type u} (a : α) (s : Set α) (t : Set α) :
      insert a (s t) = insert a s insert a t
      theorem Set.insert_union_distrib {α : Type u} (a : α) (s : Set α) (t : Set α) :
      insert a (s t) = insert a s insert a t
      theorem Set.insert_inj {α : Type u} {a : α} {b : α} {s : Set α} (ha : as) :
      insert a s = insert b s a = b
      theorem Set.forall_of_forall_insert {α : Type u} {P : αProp} {a : α} {s : Set α} (H : xinsert a s, P x) (x : α) (h : x s) :
      P x
      theorem Set.forall_insert_of_forall {α : Type u} {P : αProp} {a : α} {s : Set α} (H : xs, P x) (ha : P a) (x : α) (h : x insert a s) :
      P x
      theorem Set.bex_insert_iff {α : Type u} {P : αProp} {a : α} {s : Set α} :
      (∃ x ∈ insert a s, P x) P a ∃ x ∈ s, P x
      theorem Set.ball_insert_iff {α : Type u} {P : αProp} {a : α} {s : Set α} :
      (xinsert a s, P x) P a xs, P x

      Lemmas about singletons #

      theorem Set.singleton_def {α : Type u} (a : α) :
      {a} = insert a
      @[simp]
      theorem Set.mem_singleton_iff {α : Type u} {a : α} {b : α} :
      a {b} a = b
      @[simp]
      theorem Set.setOf_eq_eq_singleton {α : Type u} {a : α} :
      {n : α | n = a} = {a}
      @[simp]
      theorem Set.setOf_eq_eq_singleton' {α : Type u} {a : α} :
      {x : α | a = x} = {a}
      theorem Set.mem_singleton {α : Type u} (a : α) :
      a {a}
      theorem Set.eq_of_mem_singleton {α : Type u} {x : α} {y : α} (h : x {y}) :
      x = y
      @[simp]
      theorem Set.singleton_eq_singleton_iff {α : Type u} {x : α} {y : α} :
      {x} = {y} x = y
      theorem Set.mem_singleton_of_eq {α : Type u} {x : α} {y : α} (H : x = y) :
      x {y}
      theorem Set.insert_eq {α : Type u} (x : α) (s : Set α) :
      insert x s = {x} s
      @[simp]
      theorem Set.singleton_nonempty {α : Type u} (a : α) :
      @[simp]
      theorem Set.singleton_ne_empty {α : Type u} (a : α) :
      {a}
      theorem Set.empty_ssubset_singleton {α : Type u} {a : α} :
      {a}
      @[simp]
      theorem Set.singleton_subset_iff {α : Type u} {a : α} {s : Set α} :
      {a} s a s
      theorem Set.singleton_subset_singleton {α : Type u} {a : α} {b : α} :
      {a} {b} a = b
      theorem Set.set_compr_eq_eq_singleton {α : Type u} {a : α} :
      {b : α | b = a} = {a}
      @[simp]
      theorem Set.singleton_union {α : Type u} {a : α} {s : Set α} :
      {a} s = insert a s
      @[simp]
      theorem Set.union_singleton {α : Type u} {a : α} {s : Set α} :
      s {a} = insert a s
      @[simp]
      theorem Set.singleton_inter_nonempty {α : Type u} {a : α} {s : Set α} :
      Set.Nonempty ({a} s) a s
      @[simp]
      theorem Set.inter_singleton_nonempty {α : Type u} {a : α} {s : Set α} :
      Set.Nonempty (s {a}) a s
      @[simp]
      theorem Set.singleton_inter_eq_empty {α : Type u} {a : α} {s : Set α} :
      {a} s = as
      @[simp]
      theorem Set.inter_singleton_eq_empty {α : Type u} {a : α} {s : Set α} :
      s {a} = as
      theorem Set.nmem_singleton_empty {α : Type u} {s : Set α} :
      s{} Set.Nonempty s
      instance Set.uniqueSingleton {α : Type u} (a : α) :
      Unique {a}
      Equations
      • Set.uniqueSingleton a = { toInhabited := { default := { val := a, property := (_ : a {a}) } }, uniq := (_ : ∀ (x : {a}), x = default) }
      theorem Set.eq_singleton_iff_unique_mem {α : Type u} {a : α} {s : Set α} :
      s = {a} a s xs, x = a
      theorem Set.eq_singleton_iff_nonempty_unique_mem {α : Type u} {a : α} {s : Set α} :
      s = {a} Set.Nonempty s xs, x = a
      @[simp]
      theorem Set.default_coe_singleton {α : Type u} (x : α) :
      default = { val := x, property := (_ : x = x) }

      Lemmas about pairs #

      theorem Set.pair_eq_singleton {α : Type u} (a : α) :
      {a, a} = {a}
      theorem Set.pair_comm {α : Type u} (a : α) (b : α) :
      {a, b} = {b, a}
      theorem Set.pair_eq_pair_iff {α : Type u} {x : α} {y : α} {z : α} {w : α} :
      {x, y} = {z, w} x = z y = w x = w y = z

      Lemmas about sets defined as {x ∈ s | p x}. #

      theorem Set.mem_sep {α : Type u} {s : Set α} {p : αProp} {x : α} (xs : x s) (px : p x) :
      x {x : α | x s p x}
      @[simp]
      theorem Set.sep_mem_eq {α : Type u} {s : Set α} {t : Set α} :
      {x : α | x s x t} = s t
      @[simp]
      theorem Set.mem_sep_iff {α : Type u} {s : Set α} {p : αProp} {x : α} :
      x {x : α | x s p x} x s p x
      theorem Set.sep_ext_iff {α : Type u} {s : Set α} {p : αProp} {q : αProp} :
      {x : α | x s p x} = {x : α | x s q x} xs, p x q x
      theorem Set.sep_eq_of_subset {α : Type u} {s : Set α} {t : Set α} (h : s t) :
      {x : α | x t x s} = s
      @[simp]
      theorem Set.sep_subset {α : Type u} (s : Set α) (p : αProp) :
      {x : α | x s p x} s
      @[simp]
      theorem Set.sep_eq_self_iff_mem_true {α : Type u} {s : Set α} {p : αProp} :
      {x : α | x s p x} = s xs, p x
      @[simp]
      theorem Set.sep_eq_empty_iff_mem_false {α : Type u} {s : Set α} {p : αProp} :
      {x : α | x s p x} = xs, ¬p x
      theorem Set.sep_true {α : Type u} {s : Set α} :
      {x : α | x s True} = s
      theorem Set.sep_false {α : Type u} {s : Set α} :
      {x : α | x s False} =
      theorem Set.sep_empty {α : Type u} (p : αProp) :
      {x : α | x p x} =
      theorem Set.sep_univ {α : Type u} {p : αProp} :
      {x : α | x Set.univ p x} = {x : α | p x}
      @[simp]
      theorem Set.sep_union {α : Type u} {s : Set α} {t : Set α} {p : αProp} :
      {x : α | (x s x t) p x} = {x : α | x s p x} {x : α | x t p x}
      @[simp]
      theorem Set.sep_inter {α : Type u} {s : Set α} {t : Set α} {p : αProp} :
      {x : α | (x s x t) p x} = {x : α | x s p x} {x : α | x t p x}
      @[simp]
      theorem Set.sep_and {α : Type u} {s : Set α} {p : αProp} {q : αProp} :
      {x : α | x s p x q x} = {x : α | x s p x} {x : α | x s q x}
      @[simp]
      theorem Set.sep_or {α : Type u} {s : Set α} {p : αProp} {q : αProp} :
      {x : α | x s (p x q x)} = {x : α | x s p x} {x : α | x s q x}
      @[simp]
      theorem Set.sep_setOf {α : Type u} {p : αProp} {q : αProp} :
      {x : α | x {y : α | p y} q x} = {x : α | p x q x}
      @[simp]
      theorem Set.subset_singleton_iff {α : Type u_1} {s : Set α} {x : α} :
      s {x} ys, y = x
      theorem Set.subset_singleton_iff_eq {α : Type u} {s : Set α} {x : α} :
      s {x} s = s = {x}
      theorem Set.Nonempty.subset_singleton_iff {α : Type u} {a : α} {s : Set α} (h : Set.Nonempty s) :
      s {a} s = {a}
      theorem Set.ssubset_singleton_iff {α : Type u} {s : Set α} {x : α} :
      s {x} s =
      theorem Set.eq_empty_of_ssubset_singleton {α : Type u} {s : Set α} {x : α} (hs : s {x}) :
      s =
      theorem Set.eq_of_nonempty_of_subsingleton {α : Type u_1} [Subsingleton α] (s : Set α) (t : Set α) [Nonempty s] [Nonempty t] :
      s = t
      theorem Set.eq_of_nonempty_of_subsingleton' {α : Type u_1} [Subsingleton α] {s : Set α} (t : Set α) (hs : Set.Nonempty s) [Nonempty t] :
      s = t
      theorem Set.Nonempty.eq_zero {α : Type u} [Subsingleton α] [Zero α] {s : Set α} (h : Set.Nonempty s) :
      s = {0}
      theorem Set.Nonempty.eq_one {α : Type u} [Subsingleton α] [One α] {s : Set α} (h : Set.Nonempty s) :
      s = {1}

      Disjointness #

      theorem Set.disjoint_iff {α : Type u} {s : Set α} {t : Set α} :
      theorem Set.disjoint_iff_inter_eq_empty {α : Type u} {s : Set α} {t : Set α} :
      Disjoint s t s t =
      theorem Disjoint.inter_eq {α : Type u} {s : Set α} {t : Set α} :
      Disjoint s ts t =
      theorem Set.disjoint_left {α : Type u} {s : Set α} {t : Set α} :
      Disjoint s t ∀ ⦃a : α⦄, a sat
      theorem Set.disjoint_right {α : Type u} {s : Set α} {t : Set α} :
      Disjoint s t ∀ ⦃a : α⦄, a tas
      theorem Set.not_disjoint_iff {α : Type u} {s : Set α} {t : Set α} :
      ¬Disjoint s t ∃ x ∈ s, x t
      theorem Set.not_disjoint_iff_nonempty_inter {α : Type u} {s : Set α} {t : Set α} :
      theorem Set.Nonempty.not_disjoint {α : Type u} {s : Set α} {t : Set α} :

      Alias of the reverse direction of Set.not_disjoint_iff_nonempty_inter.

      theorem Set.disjoint_or_nonempty_inter {α : Type u} (s : Set α) (t : Set α) :
      theorem Set.disjoint_iff_forall_ne {α : Type u} {s : Set α} {t : Set α} :
      Disjoint s t ∀ ⦃a : α⦄, a s∀ ⦃b : α⦄, b ta b
      theorem Disjoint.ne_of_mem {α : Type u} {s : Set α} {t : Set α} :
      Disjoint s t∀ ⦃a : α⦄, a s∀ ⦃b : α⦄, b ta b

      Alias of the forward direction of Set.disjoint_iff_forall_ne.

      theorem Set.disjoint_of_subset_left {α : Type u} {s : Set α} {t : Set α} {u : Set α} (h : s u) (d : Disjoint u t) :
      theorem Set.disjoint_of_subset_right {α : Type u} {s : Set α} {t : Set α} {u : Set α} (h : t u) (d : Disjoint s u) :
      theorem Set.disjoint_of_subset {α : Type u} {s₁ : Set α} {s₂ : Set α} {t₁ : Set α} {t₂ : Set α} (hs : s₁ s₂) (ht : t₁ t₂) (h : Disjoint s₂ t₂) :
      Disjoint s₁ t₁
      @[simp]
      theorem Set.disjoint_union_left {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      @[simp]
      theorem Set.disjoint_union_right {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      @[simp]
      theorem Set.disjoint_empty {α : Type u} (s : Set α) :
      @[simp]
      theorem Set.empty_disjoint {α : Type u} (s : Set α) :
      @[simp]
      theorem Set.univ_disjoint {α : Type u} {s : Set α} :
      Disjoint Set.univ s s =
      @[simp]
      theorem Set.disjoint_univ {α : Type u} {s : Set α} :
      Disjoint s Set.univ s =
      theorem Set.disjoint_sdiff_left {α : Type u} {s : Set α} {t : Set α} :
      Disjoint (t \ s) s
      theorem Set.disjoint_sdiff_right {α : Type u} {s : Set α} {t : Set α} :
      Disjoint s (t \ s)
      theorem Set.diff_union_diff_cancel {α : Type u} {s : Set α} {t : Set α} {u : Set α} (hts : t s) (hut : u t) :
      s \ t t \ u = s \ u
      theorem Set.diff_diff_eq_sdiff_union {α : Type u} {s : Set α} {t : Set α} {u : Set α} (h : u s) :
      s \ (t \ u) = s \ t u
      @[simp]
      theorem Set.disjoint_singleton_left {α : Type u} {a : α} {s : Set α} :
      Disjoint {a} s as
      @[simp]
      theorem Set.disjoint_singleton_right {α : Type u} {a : α} {s : Set α} :
      Disjoint s {a} as
      theorem Set.disjoint_singleton {α : Type u} {a : α} {b : α} :
      Disjoint {a} {b} a b
      theorem Set.subset_diff {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      s t \ u s t Disjoint s u
      theorem Set.inter_diff_distrib_left {α : Type u} (s : Set α) (t : Set α) (u : Set α) :
      s (t \ u) = (s t) \ (s u)
      theorem Set.inter_diff_distrib_right {α : Type u} (s : Set α) (t : Set α) (u : Set α) :
      s \ t u = (s u) \ (t u)

      Lemmas about complement #

      theorem Set.compl_def {α : Type u} (s : Set α) :
      s = {x : α | xs}
      theorem Set.mem_compl {α : Type u} {s : Set α} {x : α} (h : xs) :
      x s
      theorem Set.compl_setOf {α : Type u_1} (p : αProp) :
      {a : α | p a} = {a : α | ¬p a}
      theorem Set.not_mem_of_mem_compl {α : Type u} {s : Set α} {x : α} (h : x s) :
      xs
      @[simp]
      theorem Set.mem_compl_iff {α : Type u} (s : Set α) (x : α) :
      x s xs
      theorem Set.not_mem_compl_iff {α : Type u} {s : Set α} {x : α} :
      xs x s
      @[simp]
      theorem Set.inter_compl_self {α : Type u} (s : Set α) :
      @[simp]
      theorem Set.compl_inter_self {α : Type u} (s : Set α) :
      @[simp]
      theorem Set.compl_empty {α : Type u} :
      = Set.univ
      @[simp]
      theorem Set.compl_union {α : Type u} (s : Set α) (t : Set α) :
      (s t) = s t
      theorem Set.compl_inter {α : Type u} (s : Set α) (t : Set α) :
      (s t) = s t
      @[simp]
      theorem Set.compl_univ {α : Type u} :
      Set.univ =
      @[simp]
      theorem Set.compl_empty_iff {α : Type u} {s : Set α} :
      s = s = Set.univ
      @[simp]
      theorem Set.compl_univ_iff {α : Type u} {s : Set α} :
      s = Set.univ s =
      theorem Set.compl_ne_univ {α : Type u} {s : Set α} :
      s Set.univ Set.Nonempty s
      theorem Set.nonempty_compl {α : Type u} {s : Set α} :
      Set.Nonempty s s Set.univ
      @[simp]
      theorem Set.mem_compl_singleton_iff {α : Type u} {a : α} {x : α} :
      x {a} x a
      theorem Set.compl_singleton_eq {α : Type u} (a : α) :
      {a} = {x : α | x a}
      @[simp]
      theorem Set.compl_ne_eq_singleton {α : Type u} (a : α) :
      {x : α | x a} = {a}
      theorem Set.union_eq_compl_compl_inter_compl {α : Type u} (s : Set α) (t : Set α) :
      s t = (s t)
      theorem Set.inter_eq_compl_compl_union_compl {α : Type u} (s : Set α) (t : Set α) :
      s t = (s t)
      @[simp]
      theorem Set.union_compl_self {α : Type u} (s : Set α) :
      s s = Set.univ
      @[simp]
      theorem Set.compl_union_self {α : Type u} (s : Set α) :
      s s = Set.univ
      theorem Set.compl_subset_comm {α : Type u} {s : Set α} {t : Set α} :
      s t t s
      theorem Set.subset_compl_comm {α : Type u} {s : Set α} {t : Set α} :
      s t t s
      @[simp]
      theorem Set.compl_subset_compl {α : Type u} {s : Set α} {t : Set α} :
      s t t s
      theorem Set.compl_subset_compl_of_subset {α : Type u} {s : Set α} {t : Set α} (h : t s) :
      theorem Set.subset_compl_iff_disjoint_left {α : Type u} {s : Set α} {t : Set α} :
      theorem Set.subset_compl_iff_disjoint_right {α : Type u} {s : Set α} {t : Set α} :
      theorem Set.disjoint_compl_left_iff_subset {α : Type u} {s : Set α} {t : Set α} :
      theorem Set.disjoint_compl_right_iff_subset {α : Type u} {s : Set α} {t : Set α} :
      theorem Disjoint.subset_compl_right {α : Type u} {s : Set α} {t : Set α} :
      Disjoint s ts t

      Alias of the reverse direction of Set.subset_compl_iff_disjoint_right.

      theorem Disjoint.subset_compl_left {α : Type u} {s : Set α} {t : Set α} :
      Disjoint t ss t

      Alias of the reverse direction of Set.subset_compl_iff_disjoint_left.

      theorem HasSubset.Subset.disjoint_compl_left {α : Type u} {s : Set α} {t : Set α} :
      t sDisjoint s t

      Alias of the reverse direction of Set.disjoint_compl_left_iff_subset.

      theorem HasSubset.Subset.disjoint_compl_right {α : Type u} {s : Set α} {t : Set α} :
      s tDisjoint s t

      Alias of the reverse direction of Set.disjoint_compl_right_iff_subset.

      theorem Set.subset_union_compl_iff_inter_subset {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      s t u s u t
      theorem Set.compl_subset_iff_union {α : Type u} {s : Set α} {t : Set α} :
      s t s t = Set.univ
      @[simp]
      theorem Set.subset_compl_singleton_iff {α : Type u} {a : α} {s : Set α} :
      s {a} as
      theorem Set.inter_subset {α : Type u} (a : Set α) (b : Set α) (c : Set α) :
      a b c a b c
      theorem Set.inter_compl_nonempty_iff {α : Type u} {s : Set α} {t : Set α} :

      Lemmas about set difference #

      theorem Set.diff_eq {α : Type u} (s : Set α) (t : Set α) :
      s \ t = s t
      @[simp]
      theorem Set.mem_diff {α : Type u} {s : Set α} {t : Set α} (x : α) :
      x s \ t x s xt
      theorem Set.mem_diff_of_mem {α : Type u} {s : Set α} {t : Set α} {x : α} (h1 : x s) (h2 : xt) :
      x s \ t
      theorem Set.not_mem_diff_of_mem {α : Type u} {s : Set α} {t : Set α} {x : α} (hx : x t) :
      xs \ t
      theorem Set.mem_of_mem_diff {α : Type u} {s : Set α} {t : Set α} {x : α} (h : x s \ t) :
      x s
      theorem Set.not_mem_of_mem_diff {α : Type u} {s : Set α} {t : Set α} {x : α} (h : x s \ t) :
      xt
      theorem Set.diff_eq_compl_inter {α : Type u} {s : Set α} {t : Set α} :
      s \ t = t s
      theorem Set.nonempty_diff {α : Type u} {s : Set α} {t : Set α} :
      theorem Set.diff_subset {α : Type u} (s : Set α) (t : Set α) :
      s \ t s
      theorem Set.union_diff_cancel' {α : Type u} {s : Set α} {t : Set α} {u : Set α} (h₁ : s t) (h₂ : t u) :
      t u \ s = u
      theorem Set.union_diff_cancel {α : Type u} {s : Set α} {t : Set α} (h : s t) :
      s t \ s = t
      theorem Set.union_diff_cancel_left {α : Type u} {s : Set α} {t : Set α} (h : s t ) :
      (s t) \ s = t
      theorem Set.union_diff_cancel_right {α : Type u} {s : Set α} {t : Set α} (h : s t ) :
      (s t) \ t = s
      @[simp]
      theorem Set.union_diff_left {α : Type u} {s : Set α} {t : Set α} :
      (s t) \ s = t \ s
      @[simp]
      theorem Set.union_diff_right {α : Type u} {s : Set α} {t : Set α} :
      (s t) \ t = s \ t
      theorem Set.union_diff_distrib {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      (s t) \ u = s \ u t \ u
      theorem Set.inter_diff_assoc {α : Type u} (a : Set α) (b : Set α) (c : Set α) :
      (a b) \ c = a (b \ c)
      @[simp]
      theorem Set.inter_diff_self {α : Type u} (a : Set α) (b : Set α) :
      a (b \ a) =
      @[simp]
      theorem Set.inter_union_diff {α : Type u} (s : Set α) (t : Set α) :
      s t s \ t = s
      @[simp]
      theorem Set.diff_union_inter {α : Type u} (s : Set α) (t : Set α) :
      s \ t s t = s
      @[simp]
      theorem Set.inter_union_compl {α : Type u} (s : Set α) (t : Set α) :
      s t s t = s
      theorem Set.diff_subset_diff {α : Type u} {s₁ : Set α} {s₂ : Set α} {t₁ : Set α} {t₂ : Set α} :
      s₁ s₂t₂ t₁s₁ \ t₁ s₂ \ t₂
      theorem Set.diff_subset_diff_left {α : Type u} {s₁ : Set α} {s₂ : Set α} {t : Set α} (h : s₁ s₂) :
      s₁ \ t s₂ \ t
      theorem Set.diff_subset_diff_right {α : Type u} {s : Set α} {t : Set α} {u : Set α} (h : t u) :
      s \ u s \ t
      theorem Set.compl_eq_univ_diff {α : Type u} (s : Set α) :
      s = Set.univ \ s
      @[simp]
      theorem Set.empty_diff {α : Type u} (s : Set α) :
      theorem Set.diff_eq_empty {α : Type u} {s : Set α} {t : Set α} :
      s \ t = s t
      @[simp]
      theorem Set.diff_empty {α : Type u} {s : Set α} :
      s \ = s
      @[simp]
      theorem Set.diff_univ {α : Type u} (s : Set α) :
      s \ Set.univ =
      theorem Set.diff_diff {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      (s \ t) \ u = s \ (t u)
      theorem Set.diff_diff_comm {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      (s \ t) \ u = (s \ u) \ t
      theorem Set.diff_subset_iff {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      s \ t u s t u
      theorem Set.subset_diff_union {α : Type u} (s : Set α) (t : Set α) :
      s s \ t t
      theorem Set.diff_union_of_subset {α : Type u} {s : Set α} {t : Set α} (h : t s) :
      s \ t t = s
      @[simp]
      theorem Set.diff_singleton_subset_iff {α : Type u} {x : α} {s : Set α} {t : Set α} :
      s \ {x} t s insert x t
      theorem Set.subset_diff_singleton {α : Type u} {x : α} {s : Set α} {t : Set α} (h : s t) (hx : xs) :
      s t \ {x}
      theorem Set.subset_insert_diff_singleton {α : Type u} (x : α) (s : Set α) :
      s insert x (s \ {x})
      theorem Set.diff_subset_comm {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      s \ t u s \ u t
      theorem Set.diff_inter {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      s \ (t u) = s \ t s \ u
      theorem Set.diff_inter_diff {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      s \ t (s \ u) = s \ (t u)
      theorem Set.diff_compl {α : Type u} {s : Set α} {t : Set α} :
      s \ t = s t
      theorem Set.diff_diff_right {α : Type u} {s : Set α} {t : Set α} {u : Set α} :
      s \ (t \ u) = s \ t s u
      @[simp]
      theorem Set.insert_diff_of_mem {α : Type u} {a : α} {t : Set α} (s : Set α) (h : a t) :
      insert a s \ t = s \ t
      theorem Set.insert_diff_of_not_mem {α : Type u} {a : α} {t : Set α} (s : Set α) (h : at) :
      insert a s \ t = insert a (s \ t)
      theorem Set.insert_diff_self_of_not_mem {α : Type u} {a : α} {s : Set α} (h : as) :
      insert a s \ {a} = s
      @[simp]
      theorem Set.insert_diff_eq_singleton {α : Type u} {a : α} {s : Set α} (h : as) :
      insert a s \ s = {a}
      theorem Set.inter_insert_of_mem {α : Type u} {a : α} {s : Set α} {t : Set α} (h : a s) :
      s insert a t = insert a (s t)
      theorem Set.insert_inter_of_mem {α : Type u} {a : α} {s : Set α} {t : Set α} (h : a t) :
      insert a s t = insert a (s t)
      theorem Set.inter_insert_of_not_mem {α : Type u} {a : α} {s : Set α} {t : Set α} (h : as) :
      s insert a t = s t
      theorem Set.insert_inter_of_not_mem {α : Type u} {a : α} {s : Set α} {t : Set α} (h : at) :
      insert a s t = s t
      @[simp]
      theorem Set.union_diff_self {α : Type u} {s : Set α} {t : Set α} :
      s t \ s = s t
      @[simp]
      theorem Set.diff_union_self {α : Type u} {s : Set α} {t : Set α} :
      s \ t t = s t
      @[simp]
      theorem Set.diff_inter_self {α : Type u} {a : Set α} {b : Set α} :
      b \ a a =
      @[simp]
      theorem Set.diff_inter_self_eq_diff {α : Type u} {s : Set α} {t : Set α} :
      s \ (t s) = s \ t
      @[simp]
      theorem Set.diff_self_inter {α : Type u} {s : Set α} {t : Set α} :
      s \ (s t) = s \ t
      @[simp]
      theorem Set.diff_singleton_eq_self {α : Type u} {a : α} {s : Set α} (h : as) :
      s \ {a} = s
      @[simp]
      theorem Set.diff_singleton_sSubset {α : Type u} {s : Set α} {a : α} :
      s \ {a} s a s
      @[simp]
      theorem Set.insert_diff_singleton {α : Type u} {a : α} {s : Set α} :
      insert a (s \ {a}) = insert a s
      theorem Set.insert_diff_singleton_comm {α : Type u} {a : α} {b : α} (hab : a b) (s : Set α) :
      insert a (s \ {b}) = insert a s \ {b}
      theorem Set.diff_self {α : Type u} {s : Set α} :
      s \ s =
      theorem Set.diff_diff_right_self {α : Type u} (s : Set α) (t : Set α) :
      s \ (s \ t) = s t
      theorem Set.diff_diff_cancel_left {α : Type u} {s : Set α} {t : Set α} (h : s t) :
      t \ (t \ s) = s
      theorem Set.mem_diff_singleton {α : Type u} {x : α} {y : α} {s : Set α} :
      x s \ {y} x s x y
      theorem Set.mem_diff_singleton_empty {α : Type u} {s : Set α} {t : Set (Set α)} :
      theorem Set.union_eq_diff_union_diff_union_inter {α : Type u} (s : Set α) (t : Set α) :
      s t = s \ t t \ s s t

      Symmetric difference #

      theorem Set.mem_symmDiff {α : Type u} {a : α} {s : Set α} {t : Set α} :
      a s t a s at a t as
      theorem Set.symmDiff_def {α : Type u} (s : Set α) (t : Set α) :
      s t = s \ t t \ s
      theorem Set.symmDiff_subset_union {α : Type u} {s : Set α} {t : Set α} :
      s t s t
      @[simp]
      theorem Set.symmDiff_eq_empty {α : Type u} {s : Set α} {t : Set α} :
      s t = s = t
      @[simp]
      theorem Set.symmDiff_nonempty {α : Type u} {s : Set α} {t : Set α} :
      theorem Set.inter_symmDiff_distrib_left {α : Type u} (s : Set α) (t : Set α) (u : Set α) :
      s t u = (s t) (s u)
      theorem Set.inter_symmDiff_distrib_right {α : Type u} (s : Set α) (t : Set α) (u : Set α) :
      s t u = (s u) (t u)
      theorem Set.subset_symmDiff_union_symmDiff_left {α : Type u} {s : Set α} {t : Set α} {u : Set α} (h : Disjoint s t) :
      u s u t u
      theorem Set.subset_symmDiff_union_symmDiff_right {α : Type u} {s : Set α} {t : Set α} {u : Set α} (h : Disjoint t u) :
      s s t s u

      Powerset #

      theorem Set.mem_powerset {α : Type u} {x : Set α} {s : Set α} (h : x s) :
      x 𝒫 s
      theorem Set.subset_of_mem_powerset {α : Type u} {x : Set α} {s : Set α} (h : x 𝒫 s) :
      x s
      @[simp]
      theorem Set.mem_powerset_iff {α : Type u} (x : Set α) (s : Set α) :
      x 𝒫 s x s
      theorem Set.powerset_inter {α : Type u} (s : Set α) (t : Set α) :
      𝒫(s t) = 𝒫 s 𝒫 t
      @[simp]
      theorem Set.powerset_mono {α : Type u} {s : Set α} {t : Set α} :
      𝒫 s 𝒫 t s t
      theorem Set.monotone_powerset {α : Type u} :
      Monotone Set.powerset
      @[simp]
      theorem Set.powerset_nonempty {α : Type u} {s : Set α} :
      @[simp]
      theorem Set.powerset_empty {α : Type u} :
      @[simp]
      theorem Set.powerset_univ {α : Type u} :
      𝒫 Set.univ = Set.univ
      theorem Set.powerset_singleton {α : Type u} (x : α) :
      𝒫{x} = {, {x}}

      The powerset of a singleton contains only and the singleton itself.

      Sets defined as an if-then-else #

      theorem Set.mem_dite {α : Type u} (p : Prop) [Decidable p] (s : pSet α) (t : ¬pSet α) (x : α) :
      (x if h : p then s h else t h) (∀ (h : p), x s h) ∀ (h : ¬p), x t h
      theorem Set.mem_dite_univ_right {α : Type u} (p : Prop) [Decidable p] (t : pSet α) (x : α) :
      (x if h : p then t h else Set.univ) ∀ (h : p), x t h
      @[simp]
      theorem Set.mem_ite_univ_right {α : Type u} (p : Prop) [Decidable p] (t : Set α) (x : α) :
      (x if p then t else Set.univ) px t
      theorem Set.mem_dite_univ_left {α : Type u} (p : Prop) [Decidable p] (t : ¬pSet α) (x : α) :
      (x if h : p then Set.univ else t h) ∀ (h : ¬p), x t h
      @[simp]
      theorem Set.mem_ite_univ_left {α : Type u} (p : Prop) [Decidable p] (t : Set α) (x : α) :
      (x if p then Set.univ else t) ¬px t
      theorem Set.mem_dite_empty_right {α : Type u} (p : Prop) [Decidable p] (t : pSet α) (x : α) :
      (x if h : p then t h else ) ∃ (h : p), x t h
      @[simp]
      theorem Set.mem_ite_empty_right {α : Type u} (p : Prop) [Decidable p] (t : Set α) (x : α) :
      (x if p then t else ) p x t
      theorem Set.mem_dite_empty_left {α : Type u} (p : Prop) [Decidable p] (t : ¬pSet α) (x : α) :
      (x if h : p then else t h) ∃ (h : ¬p), x t h
      @[simp]
      theorem Set.mem_ite_empty_left {α : Type u} (p : Prop) [Decidable p] (t : Set α) (x : α) :
      (x if p then else t) ¬p x t

      If-then-else for sets #

      def Set.ite {α : Type u} (t : Set α) (s : Set α) (s' : Set α) :
      Set α

      ite for sets: Set.ite t s s' ∩ t = s ∩ t, Set.ite t s s' ∩ tᶜ = s' ∩ tᶜ. Defined as s ∩ t ∪ s' \ t.

      Equations
      Instances For
        @[simp]
        theorem Set.ite_inter_self {α : Type u} (t : Set α) (s : Set α) (s' : Set α) :
        Set.ite t s s' t = s t
        @[simp]
        theorem Set.ite_compl {α : Type u} (t : Set α) (s : Set α) (s' : Set α) :
        Set.ite t s s' = Set.ite t s' s
        @[simp]
        theorem Set.ite_inter_compl_self {α : Type u} (t : Set α) (s : Set α) (s' : Set α) :
        Set.ite t s s' t = s' t
        @[simp]
        theorem Set.ite_diff_self {α : Type u} (t : Set α) (s : Set α) (s' : Set α) :
        Set.ite t s s' \ t = s' \ t
        @[simp]
        theorem Set.ite_same {α : Type u} (t : Set α) (s : Set α) :
        Set.ite t s s = s
        @[simp]
        theorem Set.ite_left {α : Type u} (s : Set α) (t : Set α) :
        Set.ite s s t = s t
        @[simp]
        theorem Set.ite_right {α : Type u} (s : Set α) (t : Set α) :
        Set.ite s t s = t s
        @[simp]
        theorem Set.ite_empty {α : Type u} (s : Set α) (s' : Set α) :
        Set.ite s s' = s'
        @[simp]
        theorem Set.ite_univ {α : Type u} (s : Set α) (s' : Set α) :
        Set.ite Set.univ s s' = s
        @[simp]
        theorem Set.ite_empty_left {α : Type u} (t : Set α) (s : Set α) :
        Set.ite t s = s \ t
        @[simp]
        theorem Set.ite_empty_right {α : Type u} (t : Set α) (s : Set α) :
        Set.ite t s = s t
        theorem Set.ite_mono {α : Type u} (t : Set α) {s₁ : Set α} {s₁' : Set α} {s₂ : Set α} {s₂' : Set α} (h : s₁ s₂) (h' : s₁' s₂') :
        Set.ite t s₁ s₁' Set.ite t s₂ s₂'
        theorem Set.ite_subset_union {α : Type u} (t : Set α) (s : Set α) (s' : Set α) :
        Set.ite t s s' s s'
        theorem Set.inter_subset_ite {α : Type u} (t : Set α) (s : Set α) (s' : Set α) :
        s s' Set.ite t s s'
        theorem Set.ite_inter_inter {α : Type u} (t : Set α) (s₁ : Set α) (s₂ : Set α) (s₁' : Set α) (s₂' : Set α) :
        Set.ite t (s₁ s₂) (s₁' s₂') = Set.ite t s₁ s₁' Set.ite t s₂ s₂'
        theorem Set.ite_inter {α : Type u} (t : Set α) (s₁ : Set α) (s₂ : Set α) (s : Set α) :
        Set.ite t (s₁ s) (s₂ s) = Set.ite t s₁ s₂ s
        theorem Set.ite_inter_of_inter_eq {α : Type u} (t : Set α) {s₁ : Set α} {s₂ : Set α} {s : Set α} (h : s₁ s = s₂ s) :
        Set.ite t s₁ s₂ s = s₁ s
        theorem Set.subset_ite {α : Type u} {t : Set α} {s : Set α} {s' : Set α} {u : Set α} :
        u Set.ite t s s' u t s u \ t s'
        theorem Set.ite_eq_of_subset_left {α : Type u} (t : Set α) {s₁ : Set α} {s₂ : Set α} (h : s₁ s₂) :
        Set.ite t s₁ s₂ = s₁ s₂ \ t
        theorem Set.ite_eq_of_subset_right {α : Type u} (t : Set α) {s₁ : Set α} {s₂ : Set α} (h : s₂ s₁) :
        Set.ite t s₁ s₂ = s₁ t s₂

        Subsingleton #

        def Set.Subsingleton {α : Type u} (s : Set α) :

        A set s is a Subsingleton if it has at most one element.

        Equations
        Instances For
          theorem Set.Subsingleton.anti {α : Type u} {s : Set α} {t : Set α} (ht : Set.Subsingleton t) (hst : s t) :
          theorem Set.Subsingleton.eq_singleton_of_mem {α : Type u} {s : Set α} (hs : Set.Subsingleton s) {x : α} (hx : x s) :
          s = {x}
          @[simp]
          theorem Set.subsingleton_singleton {α : Type u} {a : α} :
          theorem Set.subsingleton_of_subset_singleton {α : Type u} {a : α} {s : Set α} (h : s {a}) :
          theorem Set.subsingleton_of_forall_eq {α : Type u} {s : Set α} (a : α) (h : bs, b = a) :
          theorem Set.subsingleton_iff_singleton {α : Type u} {s : Set α} {x : α} (hx : x s) :
          theorem Set.Subsingleton.eq_empty_or_singleton {α : Type u} {s : Set α} (hs : Set.Subsingleton s) :
          s = ∃ (x : α), s = {x}
          theorem Set.Subsingleton.induction_on {α : Type u} {s : Set α} {p : Set αProp} (hs : Set.Subsingleton s) (he : p ) (h₁ : ∀ (x : α), p {x}) :
          p s
          @[simp]
          theorem Set.subsingleton_coe {α : Type u} (s : Set α) :

          s, coerced to a type, is a subsingleton type if and only if s is a subsingleton set.

          The coe_sort of a set s in a subsingleton type is a subsingleton. For the corresponding result for Subtype, see subtype.subsingleton.

          Equations

          Nontrivial #

          def Set.Nontrivial {α : Type u} (s : Set α) :

          A set s is Set.Nontrivial if it has at least two distinct elements.

          Equations
          Instances For
            theorem Set.nontrivial_of_mem_mem_ne {α : Type u} {s : Set α} {x : α} {y : α} (hx : x s) (hy : y s) (hxy : x y) :
            noncomputable def Set.Nontrivial.choose {α : Type u} {s : Set α} (hs : Set.Nontrivial s) :
            α × α

            Extract witnesses from s.nontrivial. This function might be used instead of case analysis on the argument. Note that it makes a proof depend on the classical.choice axiom.

            Equations
            Instances For
              theorem Set.Nontrivial.mono {α : Type u} {s : Set α} {t : Set α} (hs : Set.Nontrivial s) (hst : s t) :
              theorem Set.nontrivial_pair {α : Type u} {x : α} {y : α} (hxy : x y) :
              theorem Set.nontrivial_of_pair_subset {α : Type u} {s : Set α} {x : α} {y : α} (hxy : x y) (h : {x, y} s) :
              theorem Set.Nontrivial.pair_subset {α : Type u} {s : Set α} (hs : Set.Nontrivial s) :
              ∃ (x : α) (y : α) (_ : x y), {x, y} s
              theorem Set.nontrivial_iff_pair_subset {α : Type u} {s : Set α} :
              Set.Nontrivial s ∃ (x : α) (y : α) (_ : x y), {x, y} s
              theorem Set.nontrivial_of_exists_ne {α : Type u} {s : Set α} {x : α} (hx : x s) (h : ∃ y ∈ s, y x) :
              theorem Set.Nontrivial.exists_ne {α : Type u} {s : Set α} (hs : Set.Nontrivial s) (z : α) :
              ∃ x ∈ s, x z
              theorem Set.nontrivial_iff_exists_ne {α : Type u} {s : Set α} {x : α} (hx : x s) :
              Set.Nontrivial s ∃ y ∈ s, y x
              theorem Set.nontrivial_of_lt {α : Type u} {s : Set α} [Preorder α] {x : α} {y : α} (hx : x s) (hy : y s) (hxy : x < y) :
              theorem Set.nontrivial_of_exists_lt {α : Type u} {s : Set α} [Preorder α] (H : ∃ (x : α) (_ : x s) (y : α) (_ : y s), x < y) :
              theorem Set.Nontrivial.exists_lt {α : Type u} {s : Set α} [LinearOrder α] (hs : Set.Nontrivial s) :
              ∃ (x : α) (_ : x s) (y : α) (_ : y s), x < y
              theorem Set.nontrivial_iff_exists_lt {α : Type u} {s : Set α} [LinearOrder α] :
              Set.Nontrivial s ∃ (x : α) (_ : x s) (y : α) (_ : y s), x < y
              theorem Set.Nontrivial.nonempty {α : Type u} {s : Set α} (hs : Set.Nontrivial s) :
              theorem Set.Nontrivial.ne_empty {α : Type u} {s : Set α} (hs : Set.Nontrivial s) :
              @[simp]
              theorem Set.not_nontrivial_singleton {α : Type u} {x : α} :
              theorem Set.Nontrivial.ne_singleton {α : Type u} {s : Set α} {x : α} (hs : Set.Nontrivial s) :
              s {x}
              theorem Set.Nontrivial.not_subset_singleton {α : Type u} {s : Set α} {x : α} (hs : Set.Nontrivial s) :
              ¬s {x}
              @[simp]
              @[simp]
              theorem Set.nontrivial_coe_sort {α : Type u} {s : Set α} :

              s, coerced to a type, is a nontrivial type if and only if s is a nontrivial set.

              theorem Set.Nontrivial.coe_sort {α : Type u} {s : Set α} :

              Alias of the reverse direction of Set.nontrivial_coe_sort.


              s, coerced to a type, is a nontrivial type if and only if s is a nontrivial set.

              theorem Set.nontrivial_of_nontrivial_coe {α : Type u} {s : Set α} (hs : Nontrivial s) :

              A type with a set s whose coe_sort is a nontrivial type is nontrivial. For the corresponding result for Subtype, see Subtype.nontrivial_iff_exists_ne.

              theorem Set.nontrivial_mono {α : Type u_1} {s : Set α} {t : Set α} (hst : s t) (hs : Nontrivial s) :

              Alias of the reverse direction of Set.not_nontrivial_iff.

              Alias of the reverse direction of Set.not_subsingleton_iff.

              theorem Set.eq_singleton_or_nontrivial {α : Type u} {a : α} {s : Set α} (ha : a s) :
              theorem Set.nontrivial_iff_ne_singleton {α : Type u} {a : α} {s : Set α} (ha : a s) :
              theorem Set.Nonempty.exists_eq_singleton_or_nontrivial {α : Type u} {s : Set α} :
              Set.Nonempty s(∃ (a : α), s = {a}) Set.Nontrivial s
              theorem Set.monotoneOn_iff_monotone {α : Type u} {β : Type v} {s : Set α} [Preorder α] [Preorder β] {f : αβ} :
              MonotoneOn f s Monotone fun (a : s) => f a
              theorem Set.antitoneOn_iff_antitone {α : Type u} {β : Type v} {s : Set α} [Preorder α] [Preorder β] {f : αβ} :
              AntitoneOn f s Antitone fun (a : s) => f a
              theorem Set.strictMonoOn_iff_strictMono {α : Type u} {β : Type v} {s : Set α} [Preorder α] [Preorder β] {f : αβ} :
              StrictMonoOn f s StrictMono fun (a : s) => f a
              theorem Set.strictAntiOn_iff_strictAnti {α : Type u} {β : Type v} {s : Set α} [Preorder α] [Preorder β] {f : αβ} :
              StrictAntiOn f s StrictAnti fun (a : s) => f a

              Monotonicity on singletons #

              theorem Set.Subsingleton.monotoneOn {α : Type u} {β : Type v} {s : Set α} [Preorder α] [Preorder β] (f : αβ) (h : Set.Subsingleton s) :
              theorem Set.Subsingleton.antitoneOn {α : Type u} {β : Type v} {s : Set α} [Preorder α] [Preorder β] (f : αβ) (h : Set.Subsingleton s) :
              theorem Set.Subsingleton.strictMonoOn {α : Type u} {β : Type v} {s : Set α} [Preorder α] [Preorder β] (f : αβ) (h : Set.Subsingleton s) :
              theorem Set.Subsingleton.strictAntiOn {α : Type u} {β : Type v} {s : Set α} [Preorder α] [Preorder β] (f : αβ) (h : Set.Subsingleton s) :
              @[simp]
              theorem Set.monotoneOn_singleton {α : Type u} {β : Type v} {a : α} [Preorder α] [Preorder β] (f : αβ) :
              @[simp]
              theorem Set.antitoneOn_singleton {α : Type u} {β : Type v} {a : α} [Preorder α] [Preorder β] (f : αβ) :
              @[simp]
              theorem Set.strictMonoOn_singleton {α : Type u} {β : Type v} {a : α} [Preorder α] [Preorder β] (f : αβ) :
              @[simp]
              theorem Set.strictAntiOn_singleton {α : Type u} {β : Type v} {a : α} [Preorder α] [Preorder β] (f : αβ) :
              theorem Set.not_monotoneOn_not_antitoneOn_iff_exists_le_le {α : Type u} {β : Type v} {s : Set α} [LinearOrder α] [LinearOrder β] {f : αβ} :
              ¬MonotoneOn f s ¬AntitoneOn f s ∃ (a : α) (_ : a s) (b : α) (_ : b s) (c : α) (_ : c s), a b b c (f a < f b f c < f b f b < f a f b < f c)

              A function between linear orders which is neither monotone nor antitone makes a dent upright or downright.

              theorem Set.not_monotoneOn_not_antitoneOn_iff_exists_lt_lt {α : Type u} {β : Type v} {s : Set α} [LinearOrder α] [LinearOrder β] {f : αβ} :
              ¬MonotoneOn f s ¬AntitoneOn f s ∃ (a : α) (_ : a s) (b : α) (_ : b s) (c : α) (_ : c s), a < b b < c (f a < f b f c < f b f b < f a f b < f c)

              A function between linear orders which is neither monotone nor antitone makes a dent upright or downright.

              theorem Function.Injective.nonempty_apply_iff {α : Type u_2} {β : Type u_3} {f : Set αSet β} (hf : Function.Injective f) (h2 : f = ) {s : Set α} :

              Lemmas about inclusion, the injection of subtypes induced by #

              def Set.inclusion {α : Type u_1} {s : Set α} {t : Set α} (h : s t) :
              st

              inclusion is the "identity" function between two subsets s and t, where s ⊆ t

              Equations
              Instances For
                @[simp]
                theorem Set.inclusion_self {α : Type u_1} {s : Set α} (x : s) :
                Set.inclusion (_ : s s) x = x
                theorem Set.inclusion_eq_id {α : Type u_1} {s : Set α} (h : s s) :
                @[simp]
                theorem Set.inclusion_mk {α : Type u_1} {s : Set α} {t : Set α} {h : s t} (a : α) (ha : a s) :
                Set.inclusion h { val := a, property := ha } = { val := a, property := (_ : a t) }
                theorem Set.inclusion_right {α : Type u_1} {s : Set α} {t : Set α} (h : s t) (x : t) (m : x s) :
                Set.inclusion h { val := x, property := m } = x
                @[simp]
                theorem Set.inclusion_inclusion {α : Type u_1} {s : Set α} {t : Set α} {u : Set α} (hst : s t) (htu : t u) (x : s) :
                @[simp]
                theorem Set.inclusion_comp_inclusion {α : Type u_2} {s : Set α} {t : Set α} {u : Set α} (hst : s t) (htu : t u) :
                @[simp]
                theorem Set.coe_inclusion {α : Type u_1} {s : Set α} {t : Set α} (h : s t) (x : s) :
                (Set.inclusion h x) = x
                theorem Set.inclusion_injective {α : Type u_1} {s : Set α} {t : Set α} (h : s t) :
                @[simp]
                theorem Set.inclusion_inj {α : Type u_1} {s : Set α} {t : Set α} (h : s t) {x : s} {y : s} :
                theorem Set.eq_of_inclusion_surjective {α : Type u_1} {s : Set α} {t : Set α} {h : s t} (h_surj : Function.Surjective (Set.inclusion h)) :
                s = t
                @[simp]
                theorem Set.inclusion_le_inclusion {α : Type u_1} [Preorder α] {s : Set α} {t : Set α} (h : s t) {x : s} {y : s} :
                @[simp]
                theorem Set.inclusion_lt_inclusion {α : Type u_1} [Preorder α] {s : Set α} {t : Set α} (h : s t) {x : s} {y : s} :
                theorem Subsingleton.eq_univ_of_nonempty {α : Type u_1} [Subsingleton α] {s : Set α} :
                Set.Nonempty ss = Set.univ
                theorem Subsingleton.set_cases {α : Type u_1} [Subsingleton α] {p : Set αProp} (h0 : p ) (h1 : p Set.univ) (s : Set α) :
                p s
                theorem Subsingleton.mem_iff_nonempty {α : Type u_2} [Subsingleton α] {s : Set α} {x : α} :

                Decidability instances for sets #

                instance Set.decidableSdiff {α : Type u} (s : Set α) (t : Set α) (a : α) [Decidable (a s)] [Decidable (a t)] :
                Decidable (a s \ t)
                Equations
                instance Set.decidableInter {α : Type u} (s : Set α) (t : Set α) (a : α) [Decidable (a s)] [Decidable (a t)] :
                Decidable (a s t)
                Equations
                instance Set.decidableUnion {α : Type u} (s : Set α) (t : Set α) (a : α) [Decidable (a s)] [Decidable (a t)] :
                Decidable (a s t)
                Equations
                instance Set.decidableCompl {α : Type u} (s : Set α) (a : α) [Decidable (a s)] :
                Equations
                instance Set.decidableEmptyset {α : Type u} :
                DecidablePred fun (x : α) => x
                Equations
                instance Set.decidableUniv {α : Type u} :
                DecidablePred fun (x : α) => x Set.univ
                Equations
                instance Set.decidableSetOf {α : Type u} (a : α) (p : αProp) [Decidable (p a)] :
                Decidable (a {a : α | p a})
                Equations
                instance Set.decidableMemSingleton {α : Type u} {a : α} {b : α} [DecidableEq α] :
                Decidable (a {b})
                Equations

                Monotone lemmas for sets #

                theorem Monotone.inter {α : Type u_1} {β : Type u_2} [Preorder β] {f : βSet α} {g : βSet α} (hf : Monotone f) (hg : Monotone g) :
                Monotone fun (x : β) => f x g x
                theorem MonotoneOn.inter {α : Type u_1} {β : Type u_2} [Preorder β] {f : βSet α} {g : βSet α} {s : Set β} (hf : MonotoneOn f s) (hg : MonotoneOn g s) :
                MonotoneOn (fun (x : β) => f x g x) s
                theorem Antitone.inter {α : Type u_1} {β : Type u_2} [Preorder β] {f : βSet α} {g : βSet α} (hf : Antitone f) (hg : Antitone g) :
                Antitone fun (x : β) => f x g x
                theorem AntitoneOn.inter {α : Type u_1} {β : Type u_2} [Preorder β] {f : βSet α} {g : βSet α} {s : Set β} (hf : AntitoneOn f s) (hg : AntitoneOn g s) :
                AntitoneOn (fun (x : β) => f x g x) s
                theorem Monotone.union {α : Type u_1} {β : Type u_2} [Preorder β] {f : βSet α} {g : βSet α} (hf : Monotone f) (hg : Monotone g) :
                Monotone fun (x : β) => f x g x
                theorem MonotoneOn.union {α : Type u_1} {β : Type u_2} [Preorder β] {f : βSet α} {g : βSet α} {s : Set β} (hf : MonotoneOn f s) (hg : MonotoneOn g s) :
                MonotoneOn (fun (x : β) => f x g x) s
                theorem Antitone.union {α : Type u_1} {β : Type u_2} [Preorder β] {f : βSet α} {g : βSet α} (hf : Antitone f) (hg : Antitone g) :
                Antitone fun (x : β) => f x g x
                theorem AntitoneOn.union {α : Type u_1} {β : Type u_2} [Preorder β] {f : βSet α} {g : βSet α} {s : Set β} (hf : AntitoneOn f s) (hg : AntitoneOn g s) :
                AntitoneOn (fun (x : β) => f x g x) s
                theorem Set.monotone_setOf {α : Type u_1} {β : Type u_2} [Preorder α] {p : αβProp} (hp : ∀ (b : β), Monotone fun (a : α) => p a b) :
                Monotone fun (a : α) => {b : β | p a b}
                theorem Set.antitone_setOf {α : Type u_1} {β : Type u_2} [Preorder α] {p : αβProp} (hp : ∀ (b : β), Antitone fun (a : α) => p a b) :
                Antitone fun (a : α) => {b : β | p a b}
                theorem Set.antitone_bforall {α : Type u_1} {P : αProp} :
                Antitone fun (s : Set α) => xs, P x

                Quantifying over a set is antitone in the set

                Disjoint sets #

                theorem Disjoint.union_left {α : Type u_1} {s : Set α} {t : Set α} {u : Set α} (hs : Disjoint s u) (ht : Disjoint t u) :
                Disjoint (s t) u
                theorem Disjoint.union_right {α : Type u_1} {s : Set α} {t : Set α} {u : Set α} (ht : Disjoint s t) (hu : Disjoint s u) :
                Disjoint s (t u)
                theorem Disjoint.inter_left {α : Type u_1} {s : Set α} {t : Set α} (u : Set α) (h : Disjoint s t) :
                Disjoint (s u) t
                theorem Disjoint.inter_left' {α : Type u_1} {s : Set α} {t : Set α} (u : Set α) (h : Disjoint s t) :
                Disjoint (u s) t
                theorem Disjoint.inter_right {α : Type u_1} {s : Set α} {t : Set α} (u : Set α) (h : Disjoint s t) :
                Disjoint s (t u)
                theorem Disjoint.inter_right' {α : Type u_1} {s : Set α} {t : Set α} (u : Set α) (h : Disjoint s t) :
                Disjoint s (u t)
                theorem Disjoint.subset_left_of_subset_union {α : Type u_1} {s : Set α} {t : Set α} {u : Set α} (h : s t u) (hac : Disjoint s u) :
                s t
                theorem Disjoint.subset_right_of_subset_union {α : Type u_1} {s : Set α} {t : Set α} {u : Set α} (h : s t u) (hab : Disjoint s t) :
                s u
                @[simp]
                theorem Prop.compl_singleton (p : Prop) :
                {p} = {¬p}