Documentation

Mathlib.Order.SymmDiff

Symmetric difference and bi-implication #

This file defines the symmetric difference and bi-implication operators in (co-)Heyting algebras.

Examples #

Some examples are

Main declarations #

In generalized Boolean algebras, the symmetric difference operator is:

Notations #

References #

The proof of associativity follows the note "Associativity of the Symmetric Difference of Sets: A Proof from the Book" by John McCuan:

Tags #

boolean ring, generalized boolean algebra, boolean algebra, symmetric difference, bi-implication, Heyting

def symmDiff {α : Type u_2} [Sup α] [SDiff α] (a : α) (b : α) :
α

The symmetric difference operator on a type with and \ is (A \ B) ⊔ (B \ A).

Equations
Instances For
    def bihimp {α : Type u_2} [Inf α] [HImp α] (a : α) (b : α) :
    α

    The Heyting bi-implication is (b ⇨ a) ⊓ (a ⇨ b). This generalizes equivalence of propositions.

    Equations
    Instances For

      Notation for symmDiff

      Equations
      Instances For

        Notation for bihimp

        Equations
        Instances For
          theorem symmDiff_def {α : Type u_2} [Sup α] [SDiff α] (a : α) (b : α) :
          a b = a \ b b \ a
          theorem bihimp_def {α : Type u_2} [Inf α] [HImp α] (a : α) (b : α) :
          a b = (b a) (a b)
          theorem symmDiff_eq_Xor' (p : Prop) (q : Prop) :
          p q = Xor' p q
          @[simp]
          theorem bihimp_iff_iff {p : Prop} {q : Prop} :
          p q (p q)
          @[simp]
          theorem Bool.symmDiff_eq_xor (p : Bool) (q : Bool) :
          p q = xor p q
          @[simp]
          theorem toDual_symmDiff {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
          OrderDual.toDual (a b) = OrderDual.toDual a OrderDual.toDual b
          @[simp]
          theorem ofDual_bihimp {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : αᵒᵈ) (b : αᵒᵈ) :
          OrderDual.ofDual (a b) = OrderDual.ofDual a OrderDual.ofDual b
          theorem symmDiff_comm {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
          a b = b a
          instance symmDiff_isCommutative {α : Type u_2} [GeneralizedCoheytingAlgebra α] :
          IsCommutative α fun (x x_1 : α) => x x_1
          Equations
          @[simp]
          theorem symmDiff_self {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) :
          a a =
          @[simp]
          theorem symmDiff_bot {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) :
          a = a
          @[simp]
          theorem bot_symmDiff {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) :
          a = a
          @[simp]
          theorem symmDiff_eq_bot {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
          a b = a = b
          theorem symmDiff_of_le {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} (h : a b) :
          a b = b \ a
          theorem symmDiff_of_ge {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} (h : b a) :
          a b = a \ b
          theorem symmDiff_le {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} (ha : a b c) (hb : b a c) :
          a b c
          theorem symmDiff_le_iff {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} :
          a b c a b c b a c
          @[simp]
          theorem symmDiff_le_sup {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
          a b a b
          theorem symmDiff_eq_sup_sdiff_inf {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
          a b = (a b) \ (a b)
          theorem Disjoint.symmDiff_eq_sup {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} (h : Disjoint a b) :
          a b = a b
          theorem symmDiff_sdiff {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) (c : α) :
          a b \ c = a \ (b c) b \ (a c)
          @[simp]
          theorem symmDiff_sdiff_inf {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
          a b \ (a b) = a b
          @[simp]
          theorem symmDiff_sdiff_eq_sup {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
          a (b \ a) = a b
          @[simp]
          theorem sdiff_symmDiff_eq_sup {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
          (a \ b) b = a b
          @[simp]
          theorem symmDiff_sup_inf {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
          a b a b = a b
          @[simp]
          theorem inf_sup_symmDiff {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
          a b a b = a b
          @[simp]
          theorem symmDiff_symmDiff_inf {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
          a b (a b) = a b
          @[simp]
          theorem inf_symmDiff_symmDiff {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
          (a b) (a b) = a b
          theorem symmDiff_triangle {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) (c : α) :
          a c a b b c
          @[simp]
          theorem toDual_bihimp {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) :
          OrderDual.toDual (a b) = OrderDual.toDual a OrderDual.toDual b
          @[simp]
          theorem ofDual_symmDiff {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : αᵒᵈ) (b : αᵒᵈ) :
          OrderDual.ofDual (a b) = OrderDual.ofDual a OrderDual.ofDual b
          theorem bihimp_comm {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) :
          a b = b a
          instance bihimp_isCommutative {α : Type u_2} [GeneralizedHeytingAlgebra α] :
          IsCommutative α fun (x x_1 : α) => x x_1
          Equations
          @[simp]
          theorem bihimp_self {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) :
          a a =
          @[simp]
          theorem bihimp_top {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) :
          a = a
          @[simp]
          theorem top_bihimp {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) :
          a = a
          @[simp]
          theorem bihimp_eq_top {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} :
          a b = a = b
          theorem bihimp_of_le {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} (h : a b) :
          a b = b a
          theorem bihimp_of_ge {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} (h : b a) :
          a b = a b
          theorem le_bihimp {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} {c : α} (hb : a b c) (hc : a c b) :
          a b c
          theorem le_bihimp_iff {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} {c : α} :
          a b c a b c a c b
          @[simp]
          theorem inf_le_bihimp {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} :
          a b a b
          theorem bihimp_eq_inf_himp_inf {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) :
          a b = a b a b
          theorem Codisjoint.bihimp_eq_inf {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} (h : Codisjoint a b) :
          a b = a b
          theorem himp_bihimp {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) (c : α) :
          a b c = (a c b) (a b c)
          @[simp]
          theorem sup_himp_bihimp {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) :
          a b a b = a b
          @[simp]
          theorem bihimp_himp_eq_inf {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) :
          a (a b) = a b
          @[simp]
          theorem himp_bihimp_eq_inf {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) :
          (b a) b = a b
          @[simp]
          theorem bihimp_inf_sup {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) :
          a b (a b) = a b
          @[simp]
          theorem sup_inf_bihimp {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) :
          (a b) a b = a b
          @[simp]
          theorem bihimp_bihimp_sup {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) :
          a b (a b) = a b
          @[simp]
          theorem sup_bihimp_bihimp {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) :
          (a b) (a b) = a b
          theorem bihimp_triangle {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) (c : α) :
          a b b c a c
          @[simp]
          theorem symmDiff_top' {α : Type u_2} [CoheytingAlgebra α] (a : α) :
          @[simp]
          theorem top_symmDiff' {α : Type u_2} [CoheytingAlgebra α] (a : α) :
          @[simp]
          theorem hnot_symmDiff_self {α : Type u_2} [CoheytingAlgebra α] (a : α) :
          (a) a =
          @[simp]
          theorem symmDiff_hnot_self {α : Type u_2} [CoheytingAlgebra α] (a : α) :
          a (a) =
          theorem IsCompl.symmDiff_eq_top {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} (h : IsCompl a b) :
          a b =
          @[simp]
          theorem bihimp_bot {α : Type u_2} [HeytingAlgebra α] (a : α) :
          @[simp]
          theorem bot_bihimp {α : Type u_2} [HeytingAlgebra α] (a : α) :
          @[simp]
          theorem compl_bihimp_self {α : Type u_2} [HeytingAlgebra α] (a : α) :
          @[simp]
          theorem bihimp_hnot_self {α : Type u_2} [HeytingAlgebra α] (a : α) :
          theorem IsCompl.bihimp_eq_bot {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} (h : IsCompl a b) :
          a b =
          @[simp]
          theorem sup_sdiff_symmDiff {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) :
          (a b) \ a b = a b
          theorem disjoint_symmDiff_inf {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) :
          Disjoint (a b) (a b)
          theorem inf_symmDiff_distrib_left {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) (c : α) :
          a b c = (a b) (a c)
          theorem inf_symmDiff_distrib_right {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) (c : α) :
          a b c = (a c) (b c)
          theorem sdiff_symmDiff {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) (c : α) :
          c \ a b = c a b c \ a c \ b
          theorem sdiff_symmDiff' {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) (c : α) :
          c \ a b = c a b c \ (a b)
          @[simp]
          theorem symmDiff_sdiff_left {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) :
          a b \ a = b \ a
          @[simp]
          theorem symmDiff_sdiff_right {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) :
          a b \ b = a \ b
          @[simp]
          theorem sdiff_symmDiff_left {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) :
          a \ a b = a b
          @[simp]
          theorem sdiff_symmDiff_right {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) :
          b \ a b = a b
          theorem symmDiff_eq_sup {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) :
          a b = a b Disjoint a b
          @[simp]
          theorem le_symmDiff_iff_left {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) :
          a a b Disjoint a b
          @[simp]
          theorem le_symmDiff_iff_right {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) :
          b a b Disjoint a b
          theorem symmDiff_symmDiff_left {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) (c : α) :
          a b c = a \ (b c) b \ (a c) c \ (a b) a b c
          theorem symmDiff_symmDiff_right {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) (c : α) :
          a (b c) = a \ (b c) b \ (a c) c \ (a b) a b c
          theorem symmDiff_assoc {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) (c : α) :
          a b c = a (b c)
          instance symmDiff_isAssociative {α : Type u_2} [GeneralizedBooleanAlgebra α] :
          IsAssociative α fun (x x_1 : α) => x x_1
          Equations
          theorem symmDiff_left_comm {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) (c : α) :
          a (b c) = b (a c)
          theorem symmDiff_right_comm {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) (c : α) :
          a b c = a c b
          theorem symmDiff_symmDiff_symmDiff_comm {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) (c : α) (d : α) :
          a b (c d) = a c (b d)
          @[simp]
          theorem symmDiff_symmDiff_cancel_left {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) :
          a (a b) = b
          @[simp]
          theorem symmDiff_symmDiff_cancel_right {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) :
          b a a = b
          @[simp]
          theorem symmDiff_symmDiff_self' {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) (b : α) :
          a b a = b
          theorem symmDiff_left_involutive {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) :
          Function.Involutive fun (x : α) => x a
          theorem symmDiff_right_involutive {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) :
          Function.Involutive ((fun (x x_1 : α) => x x_1) a)
          theorem symmDiff_left_injective {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) :
          Function.Injective fun (x : α) => x a
          theorem symmDiff_right_injective {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) :
          Function.Injective ((fun (x x_1 : α) => x x_1) a)
          theorem symmDiff_left_surjective {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) :
          Function.Surjective fun (x : α) => x a
          theorem symmDiff_right_surjective {α : Type u_2} [GeneralizedBooleanAlgebra α] (a : α) :
          Function.Surjective ((fun (x x_1 : α) => x x_1) a)
          @[simp]
          theorem symmDiff_left_inj {α : Type u_2} [GeneralizedBooleanAlgebra α] {a : α} {b : α} {c : α} :
          a b = c b a = c
          @[simp]
          theorem symmDiff_right_inj {α : Type u_2} [GeneralizedBooleanAlgebra α] {a : α} {b : α} {c : α} :
          a b = a c b = c
          @[simp]
          theorem symmDiff_eq_left {α : Type u_2} [GeneralizedBooleanAlgebra α] {a : α} {b : α} :
          a b = a b =
          @[simp]
          theorem symmDiff_eq_right {α : Type u_2} [GeneralizedBooleanAlgebra α] {a : α} {b : α} :
          a b = b a =
          theorem Disjoint.symmDiff_left {α : Type u_2} [GeneralizedBooleanAlgebra α] {a : α} {b : α} {c : α} (ha : Disjoint a c) (hb : Disjoint b c) :
          Disjoint (a b) c
          theorem Disjoint.symmDiff_right {α : Type u_2} [GeneralizedBooleanAlgebra α] {a : α} {b : α} {c : α} (ha : Disjoint a b) (hb : Disjoint a c) :
          Disjoint a (b c)
          theorem symmDiff_eq_iff_sdiff_eq {α : Type u_2} [GeneralizedBooleanAlgebra α] {a : α} {b : α} {c : α} (ha : a c) :
          a b = c c \ a = b
          @[simp]
          theorem inf_himp_bihimp {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a b a b = a b
          theorem codisjoint_bihimp_sup {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          Codisjoint (a b) (a b)
          @[simp]
          theorem himp_bihimp_left {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a a b = a b
          @[simp]
          theorem himp_bihimp_right {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          b a b = b a
          @[simp]
          theorem bihimp_himp_left {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a b a = a b
          @[simp]
          theorem bihimp_himp_right {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a b b = a b
          @[simp]
          theorem bihimp_eq_inf {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a b = a b Codisjoint a b
          @[simp]
          theorem bihimp_le_iff_left {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a b a Codisjoint a b
          @[simp]
          theorem bihimp_le_iff_right {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a b b Codisjoint a b
          theorem bihimp_assoc {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) (c : α) :
          a b c = a (b c)
          instance bihimp_isAssociative {α : Type u_2} [BooleanAlgebra α] :
          IsAssociative α fun (x x_1 : α) => x x_1
          Equations
          theorem bihimp_left_comm {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) (c : α) :
          a (b c) = b (a c)
          theorem bihimp_right_comm {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) (c : α) :
          a b c = a c b
          theorem bihimp_bihimp_bihimp_comm {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) (c : α) (d : α) :
          a b (c d) = a c (b d)
          @[simp]
          theorem bihimp_bihimp_cancel_left {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a (a b) = b
          @[simp]
          theorem bihimp_bihimp_cancel_right {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          b a a = b
          @[simp]
          theorem bihimp_bihimp_self {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a b a = b
          theorem bihimp_left_involutive {α : Type u_2} [BooleanAlgebra α] (a : α) :
          Function.Involutive fun (x : α) => x a
          theorem bihimp_right_involutive {α : Type u_2} [BooleanAlgebra α] (a : α) :
          Function.Involutive ((fun (x x_1 : α) => x x_1) a)
          theorem bihimp_left_injective {α : Type u_2} [BooleanAlgebra α] (a : α) :
          Function.Injective fun (x : α) => x a
          theorem bihimp_right_injective {α : Type u_2} [BooleanAlgebra α] (a : α) :
          Function.Injective ((fun (x x_1 : α) => x x_1) a)
          theorem bihimp_left_surjective {α : Type u_2} [BooleanAlgebra α] (a : α) :
          Function.Surjective fun (x : α) => x a
          theorem bihimp_right_surjective {α : Type u_2} [BooleanAlgebra α] (a : α) :
          Function.Surjective ((fun (x x_1 : α) => x x_1) a)
          @[simp]
          theorem bihimp_left_inj {α : Type u_2} [BooleanAlgebra α] {a : α} {b : α} {c : α} :
          a b = c b a = c
          @[simp]
          theorem bihimp_right_inj {α : Type u_2} [BooleanAlgebra α] {a : α} {b : α} {c : α} :
          a b = a c b = c
          @[simp]
          theorem bihimp_eq_left {α : Type u_2} [BooleanAlgebra α] {a : α} {b : α} :
          a b = a b =
          @[simp]
          theorem bihimp_eq_right {α : Type u_2} [BooleanAlgebra α] {a : α} {b : α} :
          a b = b a =
          theorem Codisjoint.bihimp_left {α : Type u_2} [BooleanAlgebra α] {a : α} {b : α} {c : α} (ha : Codisjoint a c) (hb : Codisjoint b c) :
          Codisjoint (a b) c
          theorem Codisjoint.bihimp_right {α : Type u_2} [BooleanAlgebra α] {a : α} {b : α} {c : α} (ha : Codisjoint a b) (hb : Codisjoint a c) :
          Codisjoint a (b c)
          theorem symmDiff_eq {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a b = a b b a
          theorem bihimp_eq {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a b = (a b) (b a)
          theorem symmDiff_eq' {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a b = (a b) (a b)
          theorem bihimp_eq' {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a b = a b a b
          theorem symmDiff_top {α : Type u_2} [BooleanAlgebra α] (a : α) :
          theorem top_symmDiff {α : Type u_2} [BooleanAlgebra α] (a : α) :
          @[simp]
          theorem compl_symmDiff {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          (a b) = a b
          @[simp]
          theorem compl_bihimp {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          (a b) = a b
          @[simp]
          theorem compl_symmDiff_compl {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a b = a b
          @[simp]
          theorem compl_bihimp_compl {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a b = a b
          @[simp]
          theorem symmDiff_eq_top {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a b = IsCompl a b
          @[simp]
          theorem bihimp_eq_bot {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) :
          a b = IsCompl a b
          @[simp]
          theorem compl_symmDiff_self {α : Type u_2} [BooleanAlgebra α] (a : α) :
          @[simp]
          theorem symmDiff_compl_self {α : Type u_2} [BooleanAlgebra α] (a : α) :
          theorem symmDiff_symmDiff_right' {α : Type u_2} [BooleanAlgebra α] (a : α) (b : α) (c : α) :
          a (b c) = a b c a b c a b c a b c
          theorem Disjoint.le_symmDiff_sup_symmDiff_left {α : Type u_2} [BooleanAlgebra α] {a : α} {b : α} {c : α} (h : Disjoint a b) :
          c a c b c
          theorem Disjoint.le_symmDiff_sup_symmDiff_right {α : Type u_2} [BooleanAlgebra α] {a : α} {b : α} {c : α} (h : Disjoint b c) :
          a a b a c
          theorem Codisjoint.bihimp_inf_bihimp_le_left {α : Type u_2} [BooleanAlgebra α] {a : α} {b : α} {c : α} (h : Codisjoint a b) :
          a c b c c
          theorem Codisjoint.bihimp_inf_bihimp_le_right {α : Type u_2} [BooleanAlgebra α] {a : α} {b : α} {c : α} (h : Codisjoint b c) :
          a b a c a

          Prod #

          @[simp]
          theorem symmDiff_fst {α : Type u_2} {β : Type u_3} [GeneralizedCoheytingAlgebra α] [GeneralizedCoheytingAlgebra β] (a : α × β) (b : α × β) :
          (a b).1 = a.1 b.1
          @[simp]
          theorem symmDiff_snd {α : Type u_2} {β : Type u_3} [GeneralizedCoheytingAlgebra α] [GeneralizedCoheytingAlgebra β] (a : α × β) (b : α × β) :
          (a b).2 = a.2 b.2
          @[simp]
          theorem bihimp_fst {α : Type u_2} {β : Type u_3} [GeneralizedHeytingAlgebra α] [GeneralizedHeytingAlgebra β] (a : α × β) (b : α × β) :
          (a b).1 = a.1 b.1
          @[simp]
          theorem bihimp_snd {α : Type u_2} {β : Type u_3} [GeneralizedHeytingAlgebra α] [GeneralizedHeytingAlgebra β] (a : α × β) (b : α × β) :
          (a b).2 = a.2 b.2

          Pi #

          theorem Pi.symmDiff_def {ι : Type u_1} {π : ιType u_4} [(i : ι) → GeneralizedCoheytingAlgebra (π i)] (a : (i : ι) → π i) (b : (i : ι) → π i) :
          a b = fun (i : ι) => a i b i
          theorem Pi.bihimp_def {ι : Type u_1} {π : ιType u_4} [(i : ι) → GeneralizedHeytingAlgebra (π i)] (a : (i : ι) → π i) (b : (i : ι) → π i) :
          a b = fun (i : ι) => a i b i
          @[simp]
          theorem Pi.symmDiff_apply {ι : Type u_1} {π : ιType u_4} [(i : ι) → GeneralizedCoheytingAlgebra (π i)] (a : (i : ι) → π i) (b : (i : ι) → π i) (i : ι) :
          (a b) i = a i b i
          @[simp]
          theorem Pi.bihimp_apply {ι : Type u_1} {π : ιType u_4} [(i : ι) → GeneralizedHeytingAlgebra (π i)] (a : (i : ι) → π i) (b : (i : ι) → π i) (i : ι) :
          (a b) i = a i b i