Documentation

Mathlib.Order.Heyting.Basic

Heyting algebras #

This file defines Heyting, co-Heyting and bi-Heyting algebras.

A Heyting algebra is a bounded distributive lattice with an implication operation such that a ≤ b ⇨ c ↔ a ⊓ b ≤ c. It also comes with a pseudo-complement , such that aᶜ = a ⇨ ⊥.

Co-Heyting algebras are dual to Heyting algebras. They have a difference \ and a negation such that a \ b ≤ c ↔ a ≤ b ⊔ c and ¬a = ⊤ \ a.

Bi-Heyting algebras are Heyting algebras that are also co-Heyting algebras.

From a logic standpoint, Heyting algebras precisely model intuitionistic logic, whereas boolean algebras model classical logic.

Heyting algebras are the order theoretic equivalent of cartesian-closed categories.

Main declarations #

Notation #

References #

Tags #

Heyting, Brouwer, algebra, implication, negation, intuitionistic

Notation #

class HImp (α : Type u_4) :
Type u_4

Syntax typeclass for Heyting implication .

  • himp : ααα

    Heyting implication

Instances
    class HNot (α : Type u_4) :
    Type u_4

    Syntax typeclass for Heyting negation .

    The difference between HasCompl and HNot is that the former belongs to Heyting algebras, while the latter belongs to co-Heyting algebras. They are both pseudo-complements, but compl underestimates while HNot overestimates. In boolean algebras, they are equal. See hnot_eq_compl.

    • hnot : αα

      Heyting negation

    Instances

      Heyting negation

      Equations
      Instances For
        instance Prod.himp (α : Type u_2) (β : Type u_3) [HImp α] [HImp β] :
        HImp (α × β)
        Equations
        instance Prod.hnot (α : Type u_2) (β : Type u_3) [HNot α] [HNot β] :
        HNot (α × β)
        Equations
        instance Prod.sdiff (α : Type u_2) (β : Type u_3) [SDiff α] [SDiff β] :
        SDiff (α × β)
        Equations
        • Prod.sdiff α β = { sdiff := fun (a b : α × β) => (a.1 \ b.1, a.2 \ b.2) }
        instance Prod.hasCompl (α : Type u_2) (β : Type u_3) [HasCompl α] [HasCompl β] :
        HasCompl (α × β)
        Equations
        @[simp]
        theorem fst_himp {α : Type u_2} {β : Type u_3} [HImp α] [HImp β] (a : α × β) (b : α × β) :
        (a b).1 = a.1 b.1
        @[simp]
        theorem snd_himp {α : Type u_2} {β : Type u_3} [HImp α] [HImp β] (a : α × β) (b : α × β) :
        (a b).2 = a.2 b.2
        @[simp]
        theorem fst_hnot {α : Type u_2} {β : Type u_3} [HNot α] [HNot β] (a : α × β) :
        (a).1 = a.1
        @[simp]
        theorem snd_hnot {α : Type u_2} {β : Type u_3} [HNot α] [HNot β] (a : α × β) :
        (a).2 = a.2
        @[simp]
        theorem fst_sdiff {α : Type u_2} {β : Type u_3} [SDiff α] [SDiff β] (a : α × β) (b : α × β) :
        (a \ b).1 = a.1 \ b.1
        @[simp]
        theorem snd_sdiff {α : Type u_2} {β : Type u_3} [SDiff α] [SDiff β] (a : α × β) (b : α × β) :
        (a \ b).2 = a.2 \ b.2
        @[simp]
        theorem fst_compl {α : Type u_2} {β : Type u_3} [HasCompl α] [HasCompl β] (a : α × β) :
        a.1 = a.1
        @[simp]
        theorem snd_compl {α : Type u_2} {β : Type u_3} [HasCompl α] [HasCompl β] (a : α × β) :
        a.2 = a.2
        instance Pi.instHImpForAll {ι : Type u_1} {π : ιType u_4} [(i : ι) → HImp (π i)] :
        HImp ((i : ι) → π i)
        Equations
        • Pi.instHImpForAll = { himp := fun (a b : (i : ι) → π i) (i : ι) => a i b i }
        instance Pi.instHNotForAll {ι : Type u_1} {π : ιType u_4} [(i : ι) → HNot (π i)] :
        HNot ((i : ι) → π i)
        Equations
        • Pi.instHNotForAll = { hnot := fun (a : (i : ι) → π i) (i : ι) => a i }
        theorem Pi.himp_def {ι : Type u_1} {π : ιType u_4} [(i : ι) → HImp (π i)] (a : (i : ι) → π i) (b : (i : ι) → π i) :
        a b = fun (i : ι) => a i b i
        theorem Pi.hnot_def {ι : Type u_1} {π : ιType u_4} [(i : ι) → HNot (π i)] (a : (i : ι) → π i) :
        a = fun (i : ι) => a i
        @[simp]
        theorem Pi.himp_apply {ι : Type u_1} {π : ιType u_4} [(i : ι) → HImp (π i)] (a : (i : ι) → π i) (b : (i : ι) → π i) (i : ι) :
        (a b) i = a i b i
        @[simp]
        theorem Pi.hnot_apply {ι : Type u_1} {π : ιType u_4} [(i : ι) → HNot (π i)] (a : (i : ι) → π i) (i : ι) :
        (a) i = a i
        class GeneralizedHeytingAlgebra (α : Type u_4) extends Lattice , OrderTop , HImp :
        Type u_4

        A generalized Heyting algebra is a lattice with an additional binary operation called Heyting implication such that a ⇨ is right adjoint to a ⊓.

        This generalizes HeytingAlgebra by not requiring a bottom element.

        • sup : ααα
        • le : ααProp
        • lt : ααProp
        • le_refl : ∀ (a : α), a a
        • le_trans : ∀ (a b c : α), a bb ca c
        • lt_iff_le_not_le : ∀ (a b : α), a < b a b ¬b a
        • le_antisymm : ∀ (a b : α), a bb aa = b
        • le_sup_left : ∀ (a b : α), a a b
        • le_sup_right : ∀ (a b : α), b a b
        • sup_le : ∀ (a b c : α), a cb ca b c
        • inf : ααα
        • inf_le_left : ∀ (a b : α), a b a
        • inf_le_right : ∀ (a b : α), a b b
        • le_inf : ∀ (a b c : α), a ba ca b c
        • top : α
        • le_top : ∀ (a : α), a
        • himp : ααα
        • le_himp_iff : ∀ (a b c : α), a b c a b c

          a ⇨ is right adjoint to a ⊓

        Instances
          class GeneralizedCoheytingAlgebra (α : Type u_4) extends Lattice , OrderBot , SDiff :
          Type u_4

          A generalized co-Heyting algebra is a lattice with an additional binary difference operation \ such that \ a is right adjoint to ⊔ a.

          This generalizes CoheytingAlgebra by not requiring a top element.

          • sup : ααα
          • le : ααProp
          • lt : ααProp
          • le_refl : ∀ (a : α), a a
          • le_trans : ∀ (a b c : α), a bb ca c
          • lt_iff_le_not_le : ∀ (a b : α), a < b a b ¬b a
          • le_antisymm : ∀ (a b : α), a bb aa = b
          • le_sup_left : ∀ (a b : α), a a b
          • le_sup_right : ∀ (a b : α), b a b
          • sup_le : ∀ (a b c : α), a cb ca b c
          • inf : ααα
          • inf_le_left : ∀ (a b : α), a b a
          • inf_le_right : ∀ (a b : α), a b b
          • le_inf : ∀ (a b c : α), a ba ca b c
          • bot : α
          • bot_le : ∀ (a : α), a
          • sdiff : ααα
          • sdiff_le_iff : ∀ (a b c : α), a \ b c a b c

            \ a is right adjoint to ⊔ a

          Instances

            A Heyting algebra is a bounded lattice with an additional binary operation called Heyting implication such that a ⇨ is right adjoint to a ⊓.

            • sup : ααα
            • le : ααProp
            • lt : ααProp
            • le_refl : ∀ (a : α), a a
            • le_trans : ∀ (a b c : α), a bb ca c
            • lt_iff_le_not_le : ∀ (a b : α), a < b a b ¬b a
            • le_antisymm : ∀ (a b : α), a bb aa = b
            • le_sup_left : ∀ (a b : α), a a b
            • le_sup_right : ∀ (a b : α), b a b
            • sup_le : ∀ (a b c : α), a cb ca b c
            • inf : ααα
            • inf_le_left : ∀ (a b : α), a b a
            • inf_le_right : ∀ (a b : α), a b b
            • le_inf : ∀ (a b c : α), a ba ca b c
            • top : α
            • le_top : ∀ (a : α), a
            • himp : ααα
            • le_himp_iff : ∀ (a b c : α), a b c a b c
            • bot : α
            • bot_le : ∀ (a : α), a
            • compl : αα
            • himp_bot : ∀ (a : α), a = a

              a ⇨ is right adjoint to a ⊓

            Instances

              A co-Heyting algebra is a bounded lattice with an additional binary difference operation \ such that \ a is right adjoint to ⊔ a.

              • sup : ααα
              • le : ααProp
              • lt : ααProp
              • le_refl : ∀ (a : α), a a
              • le_trans : ∀ (a b c : α), a bb ca c
              • lt_iff_le_not_le : ∀ (a b : α), a < b a b ¬b a
              • le_antisymm : ∀ (a b : α), a bb aa = b
              • le_sup_left : ∀ (a b : α), a a b
              • le_sup_right : ∀ (a b : α), b a b
              • sup_le : ∀ (a b c : α), a cb ca b c
              • inf : ααα
              • inf_le_left : ∀ (a b : α), a b a
              • inf_le_right : ∀ (a b : α), a b b
              • le_inf : ∀ (a b c : α), a ba ca b c
              • bot : α
              • bot_le : ∀ (a : α), a
              • sdiff : ααα
              • sdiff_le_iff : ∀ (a b c : α), a \ b c a b c
              • top : α
              • le_top : ∀ (a : α), a
              • hnot : αα
              • top_sdiff : ∀ (a : α), \ a = a

                ⊤ \ a is ¬a

              Instances
                class BiheytingAlgebra (α : Type u_4) extends HeytingAlgebra , SDiff , HNot :
                Type u_4

                A bi-Heyting algebra is a Heyting algebra that is also a co-Heyting algebra.

                • sup : ααα
                • le : ααProp
                • lt : ααProp
                • le_refl : ∀ (a : α), a a
                • le_trans : ∀ (a b c : α), a bb ca c
                • lt_iff_le_not_le : ∀ (a b : α), a < b a b ¬b a
                • le_antisymm : ∀ (a b : α), a bb aa = b
                • le_sup_left : ∀ (a b : α), a a b
                • le_sup_right : ∀ (a b : α), b a b
                • sup_le : ∀ (a b c : α), a cb ca b c
                • inf : ααα
                • inf_le_left : ∀ (a b : α), a b a
                • inf_le_right : ∀ (a b : α), a b b
                • le_inf : ∀ (a b c : α), a ba ca b c
                • top : α
                • le_top : ∀ (a : α), a
                • himp : ααα
                • le_himp_iff : ∀ (a b c : α), a b c a b c
                • bot : α
                • bot_le : ∀ (a : α), a
                • compl : αα
                • himp_bot : ∀ (a : α), a = a
                • sdiff : ααα
                • hnot : αα
                • sdiff_le_iff : ∀ (a b c : α), a \ b c a b c

                  \ a is right adjoint to ⊔ a

                • top_sdiff : ∀ (a : α), \ a = a

                  ⊤ \ a is ¬a

                Instances
                  Equations
                  • HeytingAlgebra.toBoundedOrder = BoundedOrder.mk
                  Equations
                  • CoheytingAlgebra.toBoundedOrder = let src := inst; BoundedOrder.mk
                  Equations
                  @[reducible]
                  def HeytingAlgebra.ofHImp {α : Type u_2} [DistribLattice α] [BoundedOrder α] (himp : ααα) (le_himp_iff : ∀ (a b c : α), a himp b c a b c) :

                  Construct a Heyting algebra from the lattice structure and Heyting implication alone.

                  Equations
                  Instances For
                    @[reducible]
                    def HeytingAlgebra.ofCompl {α : Type u_2} [DistribLattice α] [BoundedOrder α] (compl : αα) (le_himp_iff : ∀ (a b c : α), a compl b c a b c) :

                    Construct a Heyting algebra from the lattice structure and complement operator alone.

                    Equations
                    Instances For
                      @[reducible]
                      def CoheytingAlgebra.ofSDiff {α : Type u_2} [DistribLattice α] [BoundedOrder α] (sdiff : ααα) (sdiff_le_iff : ∀ (a b c : α), sdiff a b c a b c) :

                      Construct a co-Heyting algebra from the lattice structure and the difference alone.

                      Equations
                      Instances For
                        @[reducible]
                        def CoheytingAlgebra.ofHNot {α : Type u_2} [DistribLattice α] [BoundedOrder α] (hnot : αα) (sdiff_le_iff : ∀ (a b c : α), a hnot b c a b c) :

                        Construct a co-Heyting algebra from the difference and Heyting negation alone.

                        Equations
                        Instances For
                          @[simp]
                          theorem le_himp_iff {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} {c : α} :
                          a b c a b c
                          theorem le_himp_iff' {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} {c : α} :
                          a b c b a c
                          theorem le_himp_comm {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} {c : α} :
                          a b c b a c
                          theorem le_himp {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} :
                          a b a
                          theorem le_himp_iff_left {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} :
                          a a b a b
                          @[simp]
                          theorem himp_self {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} :
                          a a =
                          theorem himp_inf_le {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} :
                          (a b) a b
                          theorem inf_himp_le {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} :
                          a (a b) b
                          @[simp]
                          theorem inf_himp {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) :
                          a (a b) = a b
                          @[simp]
                          theorem himp_inf_self {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) :
                          (a b) a = b a
                          @[simp]
                          theorem himp_eq_top_iff {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} :
                          a b = a b

                          The deduction theorem in the Heyting algebra model of intuitionistic logic: an implication holds iff the conclusion follows from the hypothesis.

                          @[simp]
                          theorem himp_top {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} :
                          @[simp]
                          theorem top_himp {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} :
                          a = a
                          theorem himp_himp {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) (c : α) :
                          a b c = a b c
                          theorem himp_le_himp_himp_himp {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} {c : α} :
                          b c (a b) a c
                          @[simp]
                          theorem himp_inf_himp_inf_le {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} {c : α} :
                          (b c) (a b) a c
                          theorem himp_left_comm {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) (c : α) :
                          a b c = b a c
                          @[simp]
                          theorem himp_idem {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} :
                          b b a = b a
                          theorem himp_inf_distrib {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) (c : α) :
                          a b c = (a b) (a c)
                          theorem sup_himp_distrib {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) (c : α) :
                          a b c = (a c) (b c)
                          theorem himp_le_himp_left {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} {c : α} (h : a b) :
                          c a c b
                          theorem himp_le_himp_right {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} {c : α} (h : a b) :
                          b c a c
                          theorem himp_le_himp {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} {c : α} {d : α} (hab : a b) (hcd : c d) :
                          b c a d
                          @[simp]
                          theorem sup_himp_self_left {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) :
                          a b a = b a
                          @[simp]
                          theorem sup_himp_self_right {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) :
                          a b b = a b
                          theorem Codisjoint.himp_eq_right {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} (h : Codisjoint a b) :
                          b a = a
                          theorem Codisjoint.himp_eq_left {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} (h : Codisjoint a b) :
                          a b = b
                          theorem Codisjoint.himp_inf_cancel_right {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} (h : Codisjoint a b) :
                          a a b = b
                          theorem Codisjoint.himp_inf_cancel_left {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} (h : Codisjoint a b) :
                          b a b = a
                          theorem Codisjoint.himp_le_of_right_le {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} {c : α} (hac : Codisjoint a c) (hba : b a) :
                          c b a

                          See himp_le for a stronger version in Boolean algebras.

                          theorem le_himp_himp {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} :
                          a (a b) b
                          theorem himp_triangle {α : Type u_2} [GeneralizedHeytingAlgebra α] (a : α) (b : α) (c : α) :
                          (a b) (b c) a c
                          theorem himp_inf_himp_cancel {α : Type u_2} [GeneralizedHeytingAlgebra α] {a : α} {b : α} {c : α} (hba : b a) (hcb : c b) :
                          (a b) (b c) = a c
                          Equations
                          Equations
                          Equations
                          • One or more equations did not get rendered due to their size.
                          instance Pi.generalizedHeytingAlgebra {ι : Type u_1} {α : ιType u_4} [(i : ι) → GeneralizedHeytingAlgebra (α i)] :
                          GeneralizedHeytingAlgebra ((i : ι) → α i)
                          Equations
                          @[simp]
                          theorem sdiff_le_iff {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} :
                          a \ b c a b c
                          theorem sdiff_le_iff' {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} :
                          a \ b c a c b
                          theorem sdiff_le_comm {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} :
                          a \ b c a \ c b
                          theorem sdiff_le {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
                          a \ b a
                          theorem Disjoint.disjoint_sdiff_left {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} (h : Disjoint a b) :
                          Disjoint (a \ c) b
                          theorem Disjoint.disjoint_sdiff_right {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} (h : Disjoint a b) :
                          Disjoint a (b \ c)
                          theorem sdiff_le_iff_left {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
                          a \ b b a b
                          @[simp]
                          theorem sdiff_self {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} :
                          a \ a =
                          theorem le_sup_sdiff {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
                          a b a \ b
                          theorem le_sdiff_sup {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
                          a a \ b b
                          theorem sup_sdiff_left {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
                          a a \ b = a
                          theorem sup_sdiff_right {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
                          a \ b a = a
                          theorem inf_sdiff_left {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
                          a \ b a = a \ b
                          theorem inf_sdiff_right {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
                          a a \ b = a \ b
                          @[simp]
                          theorem sup_sdiff_self {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
                          a b \ a = a b
                          @[simp]
                          theorem sdiff_sup_self {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
                          b \ a a = b a
                          theorem sup_sdiff_self_left {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
                          b \ a a = b a

                          Alias of sdiff_sup_self.

                          theorem sup_sdiff_self_right {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
                          a b \ a = a b

                          Alias of sup_sdiff_self.

                          theorem sup_sdiff_eq_sup {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} (h : c a) :
                          a b \ c = a b
                          theorem sup_sdiff_cancel' {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} (hab : a b) (hbc : b c) :
                          b c \ a = c
                          theorem sup_sdiff_cancel_right {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} (h : a b) :
                          a b \ a = b
                          theorem sdiff_sup_cancel {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} (h : b a) :
                          a \ b b = a
                          theorem sup_le_of_le_sdiff_left {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} (h : b c \ a) (hac : a c) :
                          a b c
                          theorem sup_le_of_le_sdiff_right {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} (h : a c \ b) (hbc : b c) :
                          a b c
                          @[simp]
                          theorem sdiff_eq_bot_iff {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
                          a \ b = a b
                          @[simp]
                          theorem sdiff_bot {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} :
                          a \ = a
                          @[simp]
                          theorem bot_sdiff {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} :
                          theorem sdiff_sdiff_sdiff_le_sdiff {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} :
                          (a \ b) \ (a \ c) c \ b
                          @[simp]
                          theorem le_sup_sdiff_sup_sdiff {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} :
                          a b (a \ c c \ b)
                          theorem sdiff_sdiff {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) (c : α) :
                          (a \ b) \ c = a \ (b c)
                          theorem sdiff_sdiff_left {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} :
                          (a \ b) \ c = a \ (b c)
                          theorem sdiff_right_comm {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) (c : α) :
                          (a \ b) \ c = (a \ c) \ b
                          theorem sdiff_sdiff_comm {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} :
                          (a \ b) \ c = (a \ c) \ b
                          @[simp]
                          theorem sdiff_idem {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
                          (a \ b) \ b = a \ b
                          @[simp]
                          theorem sdiff_sdiff_self {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
                          (a \ b) \ a =
                          theorem sup_sdiff_distrib {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) (c : α) :
                          (a b) \ c = a \ c b \ c
                          theorem sdiff_inf_distrib {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) (c : α) :
                          a \ (b c) = a \ b a \ c
                          theorem sup_sdiff {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} :
                          (a b) \ c = a \ c b \ c
                          @[simp]
                          theorem sup_sdiff_right_self {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
                          (a b) \ b = a \ b
                          @[simp]
                          theorem sup_sdiff_left_self {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
                          (a b) \ a = b \ a
                          theorem sdiff_le_sdiff_right {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} (h : a b) :
                          a \ c b \ c
                          theorem sdiff_le_sdiff_left {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} (h : a b) :
                          c \ b c \ a
                          theorem sdiff_le_sdiff {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} {d : α} (hab : a b) (hcd : c d) :
                          a \ d b \ c
                          theorem sdiff_inf {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} :
                          a \ (b c) = a \ b a \ c
                          @[simp]
                          theorem sdiff_inf_self_left {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
                          a \ (a b) = a \ b
                          @[simp]
                          theorem sdiff_inf_self_right {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) :
                          b \ (a b) = b \ a
                          theorem Disjoint.sdiff_eq_left {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} (h : Disjoint a b) :
                          a \ b = a
                          theorem Disjoint.sdiff_eq_right {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} (h : Disjoint a b) :
                          b \ a = b
                          theorem Disjoint.sup_sdiff_cancel_left {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} (h : Disjoint a b) :
                          (a b) \ a = b
                          theorem Disjoint.sup_sdiff_cancel_right {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} (h : Disjoint a b) :
                          (a b) \ b = a
                          theorem Disjoint.le_sdiff_of_le_left {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} (hac : Disjoint a c) (hab : a b) :
                          a b \ c

                          See le_sdiff for a stronger version in generalised Boolean algebras.

                          theorem sdiff_sdiff_le {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} :
                          a \ (a \ b) b
                          theorem sdiff_triangle {α : Type u_2} [GeneralizedCoheytingAlgebra α] (a : α) (b : α) (c : α) :
                          a \ c a \ b b \ c
                          theorem sdiff_sup_sdiff_cancel {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} (hba : b a) (hcb : c b) :
                          a \ b b \ c = a \ c
                          theorem sdiff_le_sdiff_of_sup_le_sup_left {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} (h : c a c b) :
                          a \ c b \ c
                          theorem sdiff_le_sdiff_of_sup_le_sup_right {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} (h : a c b c) :
                          a \ c b \ c
                          @[simp]
                          theorem inf_sdiff_sup_left {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} :
                          a \ c (a b) = a \ c
                          @[simp]
                          theorem inf_sdiff_sup_right {α : Type u_2} [GeneralizedCoheytingAlgebra α] {a : α} {b : α} {c : α} :
                          a \ c (b a) = a \ c
                          Equations
                          Equations
                          Equations
                          • One or more equations did not get rendered due to their size.
                          instance Pi.generalizedCoheytingAlgebra {ι : Type u_1} {α : ιType u_4} [(i : ι) → GeneralizedCoheytingAlgebra (α i)] :
                          GeneralizedCoheytingAlgebra ((i : ι) → α i)
                          Equations
                          @[simp]
                          theorem himp_bot {α : Type u_2} [HeytingAlgebra α] (a : α) :
                          @[simp]
                          theorem bot_himp {α : Type u_2} [HeytingAlgebra α] (a : α) :
                          theorem compl_sup_distrib {α : Type u_2} [HeytingAlgebra α] (a : α) (b : α) :
                          (a b) = a b
                          @[simp]
                          theorem compl_sup {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} :
                          (a b) = a b
                          theorem compl_le_himp {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} :
                          a a b
                          theorem compl_sup_le_himp {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} :
                          a b a b
                          theorem sup_compl_le_himp {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} :
                          b a a b
                          @[simp]
                          theorem himp_compl {α : Type u_2} [HeytingAlgebra α] (a : α) :
                          a a = a
                          theorem himp_compl_comm {α : Type u_2} [HeytingAlgebra α] (a : α) (b : α) :
                          a b = b a
                          theorem le_compl_iff_disjoint_right {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} :
                          theorem le_compl_iff_disjoint_left {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} :
                          theorem le_compl_comm {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} :
                          a b b a
                          theorem Disjoint.le_compl_right {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} :
                          Disjoint a ba b

                          Alias of the reverse direction of le_compl_iff_disjoint_right.

                          theorem Disjoint.le_compl_left {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} :
                          Disjoint b aa b

                          Alias of the reverse direction of le_compl_iff_disjoint_left.

                          theorem le_compl_iff_le_compl {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} :
                          a b b a

                          Alias of le_compl_comm.

                          theorem le_compl_of_le_compl {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} :
                          a bb a

                          Alias of the forward direction of le_compl_comm.

                          theorem disjoint_compl_left {α : Type u_2} [HeytingAlgebra α] {a : α} :
                          theorem disjoint_compl_right {α : Type u_2} [HeytingAlgebra α] {a : α} :
                          theorem LE.le.disjoint_compl_left {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} (h : b a) :
                          theorem LE.le.disjoint_compl_right {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} (h : a b) :
                          theorem IsCompl.compl_eq {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} (h : IsCompl a b) :
                          a = b
                          theorem IsCompl.eq_compl {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} (h : IsCompl a b) :
                          a = b
                          theorem compl_unique {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} (h₀ : a b = ) (h₁ : a b = ) :
                          a = b
                          @[simp]
                          theorem inf_compl_self {α : Type u_2} [HeytingAlgebra α] (a : α) :
                          @[simp]
                          theorem compl_inf_self {α : Type u_2} [HeytingAlgebra α] (a : α) :
                          theorem inf_compl_eq_bot {α : Type u_2} [HeytingAlgebra α] {a : α} :
                          theorem compl_inf_eq_bot {α : Type u_2} [HeytingAlgebra α] {a : α} :
                          @[simp]
                          theorem compl_top {α : Type u_2} [HeytingAlgebra α] :
                          @[simp]
                          theorem compl_bot {α : Type u_2} [HeytingAlgebra α] :
                          @[simp]
                          theorem le_compl_self {α : Type u_2} [HeytingAlgebra α] {a : α} :
                          a a a =
                          @[simp]
                          theorem ne_compl_self {α : Type u_2} [HeytingAlgebra α] {a : α} [Nontrivial α] :
                          a a
                          @[simp]
                          theorem compl_ne_self {α : Type u_2} [HeytingAlgebra α] {a : α} [Nontrivial α] :
                          a a
                          @[simp]
                          theorem lt_compl_self {α : Type u_2} [HeytingAlgebra α] {a : α} [Nontrivial α] :
                          a < a a =
                          theorem le_compl_compl {α : Type u_2} [HeytingAlgebra α] {a : α} :
                          theorem compl_anti {α : Type u_2} [HeytingAlgebra α] :
                          Antitone compl
                          theorem compl_le_compl {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} (h : a b) :
                          @[simp]
                          theorem compl_compl_compl {α : Type u_2} [HeytingAlgebra α] (a : α) :
                          @[simp]
                          theorem disjoint_compl_compl_left_iff {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} :
                          @[simp]
                          theorem disjoint_compl_compl_right_iff {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} :
                          theorem compl_sup_compl_le {α : Type u_2} [HeytingAlgebra α] {a : α} {b : α} :
                          a b (a b)
                          theorem compl_compl_inf_distrib {α : Type u_2} [HeytingAlgebra α] (a : α) (b : α) :
                          theorem compl_compl_himp_distrib {α : Type u_2} [HeytingAlgebra α] (a : α) (b : α) :
                          Equations
                          @[simp]
                          theorem ofDual_hnot {α : Type u_2} [HeytingAlgebra α] (a : αᵒᵈ) :
                          OrderDual.ofDual (a) = (OrderDual.ofDual a)
                          @[simp]
                          theorem toDual_compl {α : Type u_2} [HeytingAlgebra α] (a : α) :
                          OrderDual.toDual a = OrderDual.toDual a
                          instance Prod.heytingAlgebra {α : Type u_2} {β : Type u_3} [HeytingAlgebra α] [HeytingAlgebra β] :
                          Equations
                          instance Pi.heytingAlgebra {ι : Type u_1} {α : ιType u_4} [(i : ι) → HeytingAlgebra (α i)] :
                          HeytingAlgebra ((i : ι) → α i)
                          Equations
                          • Pi.heytingAlgebra = let src := Pi.orderBot; let src_1 := Pi.generalizedHeytingAlgebra; HeytingAlgebra.mk (_ : ∀ (f : (i : ι) → α i), f = f)
                          @[simp]
                          theorem top_sdiff' {α : Type u_2} [CoheytingAlgebra α] (a : α) :
                          \ a = a
                          @[simp]
                          theorem sdiff_top {α : Type u_2} [CoheytingAlgebra α] (a : α) :
                          theorem hnot_inf_distrib {α : Type u_2} [CoheytingAlgebra α] (a : α) (b : α) :
                          (a b) = a b
                          theorem sdiff_le_hnot {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} :
                          a \ b b
                          theorem sdiff_le_inf_hnot {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} :
                          a \ b a b
                          Equations
                          @[simp]
                          theorem hnot_sdiff {α : Type u_2} [CoheytingAlgebra α] (a : α) :
                          a \ a = a
                          theorem hnot_sdiff_comm {α : Type u_2} [CoheytingAlgebra α] (a : α) (b : α) :
                          a \ b = b \ a
                          theorem hnot_le_iff_codisjoint_right {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} :
                          theorem hnot_le_iff_codisjoint_left {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} :
                          theorem hnot_le_comm {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} :
                          a b b a
                          theorem Codisjoint.hnot_le_right {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} :
                          Codisjoint a ba b

                          Alias of the reverse direction of hnot_le_iff_codisjoint_right.

                          theorem Codisjoint.hnot_le_left {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} :
                          Codisjoint b aa b

                          Alias of the reverse direction of hnot_le_iff_codisjoint_left.

                          theorem codisjoint_hnot_right {α : Type u_2} [CoheytingAlgebra α] {a : α} :
                          theorem codisjoint_hnot_left {α : Type u_2} [CoheytingAlgebra α] {a : α} :
                          theorem LE.le.codisjoint_hnot_left {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} (h : a b) :
                          theorem LE.le.codisjoint_hnot_right {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} (h : b a) :
                          theorem IsCompl.hnot_eq {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} (h : IsCompl a b) :
                          a = b
                          theorem IsCompl.eq_hnot {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} (h : IsCompl a b) :
                          a = b
                          @[simp]
                          theorem sup_hnot_self {α : Type u_2} [CoheytingAlgebra α] (a : α) :
                          @[simp]
                          theorem hnot_sup_self {α : Type u_2} [CoheytingAlgebra α] (a : α) :
                          @[simp]
                          theorem hnot_bot {α : Type u_2} [CoheytingAlgebra α] :
                          @[simp]
                          theorem hnot_top {α : Type u_2} [CoheytingAlgebra α] :
                          theorem hnot_hnot_le {α : Type u_2} [CoheytingAlgebra α] {a : α} :
                          theorem hnot_anti {α : Type u_2} [CoheytingAlgebra α] :
                          theorem hnot_le_hnot {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} (h : a b) :
                          @[simp]
                          theorem hnot_hnot_hnot {α : Type u_2} [CoheytingAlgebra α] (a : α) :
                          @[simp]
                          theorem codisjoint_hnot_hnot_left_iff {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} :
                          @[simp]
                          theorem codisjoint_hnot_hnot_right_iff {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} :
                          theorem le_hnot_inf_hnot {α : Type u_2} [CoheytingAlgebra α] {a : α} {b : α} :
                          (a b) a b
                          theorem hnot_hnot_sup_distrib {α : Type u_2} [CoheytingAlgebra α] (a : α) (b : α) :
                          theorem hnot_hnot_sdiff_distrib {α : Type u_2} [CoheytingAlgebra α] (a : α) (b : α) :
                          Equations
                          @[simp]
                          theorem ofDual_compl {α : Type u_2} [CoheytingAlgebra α] (a : αᵒᵈ) :
                          OrderDual.ofDual a = OrderDual.ofDual a
                          @[simp]
                          theorem ofDual_himp {α : Type u_2} [CoheytingAlgebra α] (a : αᵒᵈ) (b : αᵒᵈ) :
                          OrderDual.ofDual (a b) = OrderDual.ofDual b \ OrderDual.ofDual a
                          @[simp]
                          theorem toDual_hnot {α : Type u_2} [CoheytingAlgebra α] (a : α) :
                          OrderDual.toDual (a) = (OrderDual.toDual a)
                          @[simp]
                          theorem toDual_sdiff {α : Type u_2} [CoheytingAlgebra α] (a : α) (b : α) :
                          OrderDual.toDual (a \ b) = OrderDual.toDual b OrderDual.toDual a
                          instance Prod.coheytingAlgebra {α : Type u_2} {β : Type u_3} [CoheytingAlgebra α] [CoheytingAlgebra β] :
                          Equations
                          • One or more equations did not get rendered due to their size.
                          instance Pi.coheytingAlgebra {ι : Type u_1} {α : ιType u_4} [(i : ι) → CoheytingAlgebra (α i)] :
                          CoheytingAlgebra ((i : ι) → α i)
                          Equations
                          • Pi.coheytingAlgebra = let src := Pi.orderTop; let src_1 := Pi.generalizedCoheytingAlgebra; CoheytingAlgebra.mk (_ : ∀ (f : (i : ι) → α i), \ f = f)
                          theorem compl_le_hnot {α : Type u_2} [BiheytingAlgebra α] {a : α} :

                          Propositions form a Heyting algebra with implication as Heyting implication and negation as complement.

                          Equations
                          @[simp]
                          theorem himp_iff_imp (p : Prop) (q : Prop) :
                          p q pq
                          @[simp]
                          theorem compl_iff_not (p : Prop) :
                          @[reducible]

                          A bounded linear order is a bi-Heyting algebra by setting

                          • a ⇨ b = ⊤ if a ≤ b and a ⇨ b = b otherwise.
                          • a \ b = ⊥ if a ≤ b and a \ b = a otherwise.
                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[reducible]
                            def Function.Injective.generalizedHeytingAlgebra {α : Type u_2} {β : Type u_3} [Sup α] [Inf α] [Top α] [HImp α] [GeneralizedHeytingAlgebra β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_top : f = ) (map_himp : ∀ (a b : α), f (a b) = f a f b) :

                            Pullback a GeneralizedHeytingAlgebra along an injection.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[reducible]
                              def Function.Injective.generalizedCoheytingAlgebra {α : Type u_2} {β : Type u_3} [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedCoheytingAlgebra β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_bot : f = ) (map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b) :

                              Pullback a GeneralizedCoheytingAlgebra along an injection.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[reducible]
                                def Function.Injective.heytingAlgebra {α : Type u_2} {β : Type u_3} [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [HImp α] [HeytingAlgebra β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_top : f = ) (map_bot : f = ) (map_compl : ∀ (a : α), f a = (f a)) (map_himp : ∀ (a b : α), f (a b) = f a f b) :

                                Pullback a HeytingAlgebra along an injection.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  @[reducible]
                                  def Function.Injective.coheytingAlgebra {α : Type u_2} {β : Type u_3} [Sup α] [Inf α] [Top α] [Bot α] [HNot α] [SDiff α] [CoheytingAlgebra β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_top : f = ) (map_bot : f = ) (map_hnot : ∀ (a : α), f (a) = f a) (map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b) :

                                  Pullback a CoheytingAlgebra along an injection.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    @[reducible]
                                    def Function.Injective.biheytingAlgebra {α : Type u_2} {β : Type u_3} [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [HNot α] [HImp α] [SDiff α] [BiheytingAlgebra β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_top : f = ) (map_bot : f = ) (map_compl : ∀ (a : α), f a = (f a)) (map_hnot : ∀ (a : α), f (a) = f a) (map_himp : ∀ (a b : α), f (a b) = f a f b) (map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b) :

                                    Pullback a BiheytingAlgebra along an injection.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      @[simp]
                                      @[simp]
                                      @[simp]
                                      @[simp]