Casts for Rational Numbers #
Summary #
We define the canonical injection from ℚ into an arbitrary division ring and prove various casting lemmas showing the well-behavedness of this injection.
Notations #
/.
is infix notation forrat.mk
.
Tags #
rat, rationals, field, ℚ, numerator, denominator, num, denom, cast, coercion, casting
theorem
Rat.cast_mk_of_ne_zero
{α : Type u_3}
[DivisionRing α]
(a : ℤ)
(b : ℤ)
(b0 : ↑b ≠ 0)
:
↑(Rat.divInt a b) = ↑a / ↑b
@[simp]
theorem
map_ratCast
{F : Type u_1}
{α : Type u_3}
{β : Type u_4}
[DivisionRing α]
[DivisionRing β]
[RingHomClass F α β]
(f : F)
(q : ℚ)
:
f ↑q = ↑q
@[simp]
theorem
eq_ratCast
{F : Type u_1}
{k : Type u_5}
[DivisionRing k]
[RingHomClass F ℚ k]
(f : F)
(r : ℚ)
:
f r = ↑r
theorem
MonoidWithZeroHom.ext_rat'
{F : Type u_1}
{M₀ : Type u_5}
[MonoidWithZero M₀]
[MonoidWithZeroHomClass F ℚ M₀]
{f : F}
{g : F}
(h : ∀ (m : ℤ), f ↑m = g ↑m)
:
f = g
If f
and g
agree on the integers then they are equal φ
.
theorem
MonoidWithZeroHom.ext_rat
{M₀ : Type u_5}
[MonoidWithZero M₀]
{f : ℚ →*₀ M₀}
{g : ℚ →*₀ M₀}
(h : MonoidWithZeroHom.comp f ↑(Int.castRingHom ℚ) = MonoidWithZeroHom.comp g ↑(Int.castRingHom ℚ))
:
f = g
If f
and g
agree on the integers then they are equal φ
.
See note [partially-applied ext lemmas] for why comp
is used here.
theorem
MonoidWithZeroHom.ext_rat_on_pnat
{F : Type u_1}
{M₀ : Type u_5}
[MonoidWithZero M₀]
[MonoidWithZeroHomClass F ℚ M₀]
{f : F}
{g : F}
(same_on_neg_one : f (-1) = g (-1))
(same_on_pnat : ∀ (n : ℕ), 0 < n → f ↑n = g ↑n)
:
f = g
Positive integer values of a morphism φ
and its value on -1
completely determine φ
.
theorem
RingHom.ext_rat
{F : Type u_1}
{R : Type u_5}
[Semiring R]
[RingHomClass F ℚ R]
(f : F)
(g : F)
:
f = g
Any two ring homomorphisms from ℚ
to a semiring are equal. If the codomain is a division ring,
then this lemma follows from eq_ratCast
.
Equations
- (_ : Subsingleton (ℚ →+* R)) = (_ : Subsingleton (ℚ →+* R))
Equations
- (_ : IsScalarTower ℚ K K) = (_ : IsScalarTower ℚ K K)