Documentation

Mathlib.Data.Set.NAry

N-ary images of sets #

This file defines Set.image2, the binary image of finsets. This is the finset version of Set.image2. This is mostly useful to define pointwise operations.

Notes #

This file is very similar to the n-ary section of Data.Set.Basic, to Order.Filter.NAry and to Data.Option.NAry. Please keep them in sync.

We do not define Set.image3 as its only purpose would be to prove properties of Set.image2 and Set.image2 already fulfills this task.

def Set.image2 {α : Type u_1} {β : Type u_3} {γ : Type u_5} (f : αβγ) (s : Set α) (t : Set β) :
Set γ

The image of a binary function f : α → β → γ as a function Set α → Set β → Set γ. Mathematically this should be thought of as the image of the corresponding function α × β → γ.

Equations
Instances For
    @[simp]
    theorem Set.mem_image2 {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {c : γ} :
    c Set.image2 f s t ∃ (a : α) (b : β), a s b t f a b = c
    theorem Set.mem_image2_of_mem {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {a : α} {b : β} (ha : a s) (hb : b t) :
    f a b Set.image2 f s t
    theorem Set.mem_image2_iff {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {a : α} {b : β} (hf : Function.Injective2 f) :
    f a b Set.image2 f s t a s b t
    theorem Set.image2_subset {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {s' : Set α} {t : Set β} {t' : Set β} (hs : s s') (ht : t t') :
    Set.image2 f s t Set.image2 f s' t'

    image2 is monotone with respect to .

    theorem Set.image2_subset_left {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {t' : Set β} (ht : t t') :
    theorem Set.image2_subset_right {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {s' : Set α} {t : Set β} (hs : s s') :
    theorem Set.image_subset_image2_left {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {b : β} (hb : b t) :
    (fun (a : α) => f a b) '' s Set.image2 f s t
    theorem Set.image_subset_image2_right {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {a : α} (ha : a s) :
    f a '' t Set.image2 f s t
    theorem Set.forall_image2_iff {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {p : γProp} :
    (zSet.image2 f s t, p z) xs, yt, p (f x y)
    @[simp]
    theorem Set.image2_subset_iff {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {u : Set γ} :
    Set.image2 f s t u xs, yt, f x y u
    theorem Set.image2_subset_iff_left {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {u : Set γ} :
    Set.image2 f s t u as, (fun (b : β) => f a b) '' t u
    theorem Set.image2_subset_iff_right {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {u : Set γ} :
    Set.image2 f s t u bt, (fun (a : α) => f a b) '' s u
    theorem Set.image_prod {α : Type u_1} {β : Type u_3} {γ : Type u_5} (f : αβγ) {s : Set α} {t : Set β} :
    (fun (x : α × β) => f x.1 x.2) '' s ×ˢ t = Set.image2 f s t
    @[simp]
    theorem Set.image_uncurry_prod {α : Type u_1} {β : Type u_3} {γ : Type u_5} (f : αβγ) (s : Set α) (t : Set β) :
    @[simp]
    theorem Set.image2_mk_eq_prod {α : Type u_1} {β : Type u_3} {s : Set α} {t : Set β} :
    Set.image2 Prod.mk s t = s ×ˢ t
    theorem Set.image2_curry {α : Type u_1} {β : Type u_3} {γ : Type u_5} (f : α × βγ) (s : Set α) (t : Set β) :
    Set.image2 (fun (a : α) (b : β) => f (a, b)) s t = f '' s ×ˢ t
    theorem Set.image2_swap {α : Type u_1} {β : Type u_3} {γ : Type u_5} (f : αβγ) (s : Set α) (t : Set β) :
    Set.image2 f s t = Set.image2 (fun (a : β) (b : α) => f b a) t s
    theorem Set.image2_union_left {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {s' : Set α} {t : Set β} :
    Set.image2 f (s s') t = Set.image2 f s t Set.image2 f s' t
    theorem Set.image2_union_right {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {t' : Set β} :
    Set.image2 f s (t t') = Set.image2 f s t Set.image2 f s t'
    theorem Set.image2_inter_left {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {s' : Set α} {t : Set β} (hf : Function.Injective2 f) :
    Set.image2 f (s s') t = Set.image2 f s t Set.image2 f s' t
    theorem Set.image2_inter_right {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {t' : Set β} (hf : Function.Injective2 f) :
    Set.image2 f s (t t') = Set.image2 f s t Set.image2 f s t'
    @[simp]
    theorem Set.image2_empty_left {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {t : Set β} :
    @[simp]
    theorem Set.image2_empty_right {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} :
    theorem Set.Nonempty.image2 {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} :
    @[simp]
    theorem Set.image2_nonempty_iff {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} :
    theorem Set.Nonempty.of_image2_left {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} (h : Set.Nonempty (Set.image2 f s t)) :
    theorem Set.Nonempty.of_image2_right {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} (h : Set.Nonempty (Set.image2 f s t)) :
    @[simp]
    theorem Set.image2_eq_empty_iff {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} :
    theorem Set.Subsingleton.image2 {α : Type u_1} {β : Type u_3} {γ : Type u_5} {s : Set α} {t : Set β} (hs : Set.Subsingleton s) (ht : Set.Subsingleton t) (f : αβγ) :
    theorem Set.image2_inter_subset_left {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {s' : Set α} {t : Set β} :
    Set.image2 f (s s') t Set.image2 f s t Set.image2 f s' t
    theorem Set.image2_inter_subset_right {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {t' : Set β} :
    Set.image2 f s (t t') Set.image2 f s t Set.image2 f s t'
    @[simp]
    theorem Set.image2_singleton_left {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {t : Set β} {a : α} :
    Set.image2 f {a} t = f a '' t
    @[simp]
    theorem Set.image2_singleton_right {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {b : β} :
    Set.image2 f s {b} = (fun (a : α) => f a b) '' s
    theorem Set.image2_singleton {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {a : α} {b : β} :
    Set.image2 f {a} {b} = {f a b}
    @[simp]
    theorem Set.image2_insert_left {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {a : α} :
    Set.image2 f (insert a s) t = (fun (b : β) => f a b) '' t Set.image2 f s t
    @[simp]
    theorem Set.image2_insert_right {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {b : β} :
    Set.image2 f s (insert b t) = (fun (a : α) => f a b) '' s Set.image2 f s t
    theorem Set.image2_congr {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {f' : αβγ} {s : Set α} {t : Set β} (h : as, bt, f a b = f' a b) :
    Set.image2 f s t = Set.image2 f' s t
    theorem Set.image2_congr' {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {f' : αβγ} {s : Set α} {t : Set β} (h : ∀ (a : α) (b : β), f a b = f' a b) :
    Set.image2 f s t = Set.image2 f' s t

    A common special case of image2_congr

    def Set.image3 {α : Type u_1} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} (g : αβγδ) (s : Set α) (t : Set β) (u : Set γ) :
    Set δ

    The image of a ternary function f : α → β → γ → δ as a function Set α → Set β → Set γ → Set δ. Mathematically this should be thought of as the image of the corresponding function α × β × γ → δ.

    Equations
    Instances For
      @[simp]
      theorem Set.mem_image3 {α : Type u_1} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {g : αβγδ} {s : Set α} {t : Set β} {u : Set γ} {d : δ} :
      d Set.image3 g s t u ∃ (a : α) (b : β) (c : γ), a s b t c u g a b c = d
      theorem Set.image3_mono {α : Type u_1} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {g : αβγδ} {s : Set α} {s' : Set α} {t : Set β} {t' : Set β} {u : Set γ} {u' : Set γ} (hs : s s') (ht : t t') (hu : u u') :
      Set.image3 g s t u Set.image3 g s' t' u'
      theorem Set.image3_congr {α : Type u_1} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {g : αβγδ} {g' : αβγδ} {s : Set α} {t : Set β} {u : Set γ} (h : as, bt, cu, g a b c = g' a b c) :
      Set.image3 g s t u = Set.image3 g' s t u
      theorem Set.image3_congr' {α : Type u_1} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {g : αβγδ} {g' : αβγδ} {s : Set α} {t : Set β} {u : Set γ} (h : ∀ (a : α) (b : β) (c : γ), g a b c = g' a b c) :
      Set.image3 g s t u = Set.image3 g' s t u

      A common special case of image3_congr

      theorem Set.image2_image2_left {α : Type u_1} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {ε : Type u_9} {s : Set α} {t : Set β} {u : Set γ} (f : δγε) (g : αβδ) :
      Set.image2 f (Set.image2 g s t) u = Set.image3 (fun (a : α) (b : β) (c : γ) => f (g a b) c) s t u
      theorem Set.image2_image2_right {α : Type u_1} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {ε : Type u_9} {s : Set α} {t : Set β} {u : Set γ} (f : αδε) (g : βγδ) :
      Set.image2 f s (Set.image2 g t u) = Set.image3 (fun (a : α) (b : β) (c : γ) => f a (g b c)) s t u
      theorem Set.image_image2 {α : Type u_1} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {s : Set α} {t : Set β} (f : αβγ) (g : γδ) :
      g '' Set.image2 f s t = Set.image2 (fun (a : α) (b : β) => g (f a b)) s t
      theorem Set.image2_image_left {α : Type u_1} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {s : Set α} {t : Set β} (f : γβδ) (g : αγ) :
      Set.image2 f (g '' s) t = Set.image2 (fun (a : α) (b : β) => f (g a) b) s t
      theorem Set.image2_image_right {α : Type u_1} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {s : Set α} {t : Set β} (f : αγδ) (g : βγ) :
      Set.image2 f s (g '' t) = Set.image2 (fun (a : α) (b : β) => f a (g b)) s t
      @[simp]
      theorem Set.image2_left {α : Type u_1} {β : Type u_3} {s : Set α} {t : Set β} (h : Set.Nonempty t) :
      Set.image2 (fun (x : α) (x_1 : β) => x) s t = s
      @[simp]
      theorem Set.image2_right {α : Type u_1} {β : Type u_3} {s : Set α} {t : Set β} (h : Set.Nonempty s) :
      Set.image2 (fun (x : α) (y : β) => y) s t = t
      theorem Set.image2_assoc {α : Type u_1} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {ε : Type u_9} {ε' : Type u_10} {s : Set α} {t : Set β} {u : Set γ} {f : δγε} {g : αβδ} {f' : αε'ε} {g' : βγε'} (h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)) :
      Set.image2 f (Set.image2 g s t) u = Set.image2 f' s (Set.image2 g' t u)
      theorem Set.image2_comm {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {t : Set β} {g : βαγ} (h_comm : ∀ (a : α) (b : β), f a b = g b a) :
      Set.image2 f s t = Set.image2 g t s
      theorem Set.image2_left_comm {α : Type u_1} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {δ' : Type u_8} {ε : Type u_9} {s : Set α} {t : Set β} {u : Set γ} {f : αδε} {g : βγδ} {f' : αγδ'} {g' : βδ'ε} (h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)) :
      Set.image2 f s (Set.image2 g t u) = Set.image2 g' t (Set.image2 f' s u)
      theorem Set.image2_right_comm {α : Type u_1} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {δ' : Type u_8} {ε : Type u_9} {s : Set α} {t : Set β} {u : Set γ} {f : δγε} {g : αβδ} {f' : αγδ'} {g' : δ'βε} (h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b) :
      Set.image2 f (Set.image2 g s t) u = Set.image2 g' (Set.image2 f' s u) t
      theorem Set.image2_image2_image2_comm {α : Type u_1} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {ε : Type u_9} {ε' : Type u_10} {ζ : Type u_11} {ζ' : Type u_12} {ν : Type u_13} {s : Set α} {t : Set β} {u : Set γ} {v : Set δ} {f : εζν} {g : αβε} {h : γδζ} {f' : ε'ζ'ν} {g' : αγε'} {h' : βδζ'} (h_comm : ∀ (a : α) (b : β) (c : γ) (d : δ), f (g a b) (h c d) = f' (g' a c) (h' b d)) :
      Set.image2 f (Set.image2 g s t) (Set.image2 h u v) = Set.image2 f' (Set.image2 g' s u) (Set.image2 h' t v)
      theorem Set.image_image2_distrib {α : Type u_1} {α' : Type u_2} {β : Type u_3} {β' : Type u_4} {γ : Type u_5} {δ : Type u_7} {f : αβγ} {s : Set α} {t : Set β} {g : γδ} {f' : α'β'δ} {g₁ : αα'} {g₂ : ββ'} (h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ a) (g₂ b)) :
      g '' Set.image2 f s t = Set.image2 f' (g₁ '' s) (g₂ '' t)
      theorem Set.image_image2_distrib_left {α : Type u_1} {α' : Type u_2} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {f : αβγ} {s : Set α} {t : Set β} {g : γδ} {f' : α'βδ} {g' : αα'} (h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g' a) b) :
      g '' Set.image2 f s t = Set.image2 f' (g' '' s) t

      Symmetric statement to Set.image2_image_left_comm.

      theorem Set.image_image2_distrib_right {α : Type u_1} {β : Type u_3} {β' : Type u_4} {γ : Type u_5} {δ : Type u_7} {f : αβγ} {s : Set α} {t : Set β} {g : γδ} {f' : αβ'δ} {g' : ββ'} (h_distrib : ∀ (a : α) (b : β), g (f a b) = f' a (g' b)) :
      g '' Set.image2 f s t = Set.image2 f' s (g' '' t)

      Symmetric statement to Set.image_image2_right_comm.

      theorem Set.image2_image_left_comm {α : Type u_1} {α' : Type u_2} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {s : Set α} {t : Set β} {f : α'βγ} {g : αα'} {f' : αβδ} {g' : δγ} (h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b)) :
      Set.image2 f (g '' s) t = g' '' Set.image2 f' s t

      Symmetric statement to Set.image_image2_distrib_left.

      theorem Set.image_image2_right_comm {α : Type u_1} {β : Type u_3} {β' : Type u_4} {γ : Type u_5} {δ : Type u_7} {s : Set α} {t : Set β} {f : αβ'γ} {g : ββ'} {f' : αβδ} {g' : δγ} (h_right_comm : ∀ (a : α) (b : β), f a (g b) = g' (f' a b)) :
      Set.image2 f s (g '' t) = g' '' Set.image2 f' s t

      Symmetric statement to Set.image_image2_distrib_right.

      theorem Set.image2_distrib_subset_left {α : Type u_1} {β : Type u_3} {β' : Type u_4} {γ : Type u_5} {γ' : Type u_6} {δ : Type u_7} {ε : Type u_9} {s : Set α} {t : Set β} {u : Set γ} {f : αδε} {g : βγδ} {f₁ : αββ'} {f₂ : αγγ'} {g' : β'γ'ε} (h_distrib : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' (f₁ a b) (f₂ a c)) :
      Set.image2 f s (Set.image2 g t u) Set.image2 g' (Set.image2 f₁ s t) (Set.image2 f₂ s u)

      The other direction does not hold because of the s-s cross terms on the RHS.

      theorem Set.image2_distrib_subset_right {α : Type u_1} {α' : Type u_2} {β : Type u_3} {β' : Type u_4} {γ : Type u_5} {δ : Type u_7} {ε : Type u_9} {s : Set α} {t : Set β} {u : Set γ} {f : δγε} {g : αβδ} {f₁ : αγα'} {f₂ : βγβ'} {g' : α'β'ε} (h_distrib : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f₁ a c) (f₂ b c)) :
      Set.image2 f (Set.image2 g s t) u Set.image2 g' (Set.image2 f₁ s u) (Set.image2 f₂ t u)

      The other direction does not hold because of the u-u cross terms on the RHS.

      theorem Set.image_image2_antidistrib {α : Type u_1} {α' : Type u_2} {β : Type u_3} {β' : Type u_4} {γ : Type u_5} {δ : Type u_7} {f : αβγ} {s : Set α} {t : Set β} {g : γδ} {f' : β'α'δ} {g₁ : ββ'} {g₂ : αα'} (h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ b) (g₂ a)) :
      g '' Set.image2 f s t = Set.image2 f' (g₁ '' t) (g₂ '' s)
      theorem Set.image_image2_antidistrib_left {α : Type u_1} {β : Type u_3} {β' : Type u_4} {γ : Type u_5} {δ : Type u_7} {f : αβγ} {s : Set α} {t : Set β} {g : γδ} {f' : β'αδ} {g' : ββ'} (h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g' b) a) :
      g '' Set.image2 f s t = Set.image2 f' (g' '' t) s

      Symmetric statement to Set.image2_image_left_anticomm.

      theorem Set.image_image2_antidistrib_right {α : Type u_1} {α' : Type u_2} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {f : αβγ} {s : Set α} {t : Set β} {g : γδ} {f' : βα'δ} {g' : αα'} (h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' b (g' a)) :
      g '' Set.image2 f s t = Set.image2 f' t (g' '' s)

      Symmetric statement to Set.image_image2_right_anticomm.

      theorem Set.image2_image_left_anticomm {α : Type u_1} {α' : Type u_2} {β : Type u_3} {γ : Type u_5} {δ : Type u_7} {s : Set α} {t : Set β} {f : α'βγ} {g : αα'} {f' : βαδ} {g' : δγ} (h_left_anticomm : ∀ (a : α) (b : β), f (g a) b = g' (f' b a)) :
      Set.image2 f (g '' s) t = g' '' Set.image2 f' t s

      Symmetric statement to Set.image_image2_antidistrib_left.

      theorem Set.image_image2_right_anticomm {α : Type u_1} {β : Type u_3} {β' : Type u_4} {γ : Type u_5} {δ : Type u_7} {s : Set α} {t : Set β} {f : αβ'γ} {g : ββ'} {f' : βαδ} {g' : δγ} (h_right_anticomm : ∀ (a : α) (b : β), f a (g b) = g' (f' b a)) :
      Set.image2 f s (g '' t) = g' '' Set.image2 f' t s

      Symmetric statement to Set.image_image2_antidistrib_right.

      theorem Set.image2_left_identity {α : Type u_1} {β : Type u_3} {f : αββ} {a : α} (h : ∀ (b : β), f a b = b) (t : Set β) :
      Set.image2 f {a} t = t

      If a is a left identity for f : α → β → β, then {a} is a left identity for Set.image2 f.

      theorem Set.image2_right_identity {α : Type u_1} {β : Type u_3} {f : αβα} {b : β} (h : ∀ (a : α), f a b = a) (s : Set α) :
      Set.image2 f s {b} = s

      If b is a right identity for f : α → β → α, then {b} is a right identity for Set.image2 f.

      theorem Set.image2_inter_union_subset_union {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {s' : Set α} {t : Set β} {t' : Set β} :
      Set.image2 f (s s') (t t') Set.image2 f s t Set.image2 f s' t'
      theorem Set.image2_union_inter_subset_union {α : Type u_1} {β : Type u_3} {γ : Type u_5} {f : αβγ} {s : Set α} {s' : Set α} {t : Set β} {t' : Set β} :
      Set.image2 f (s s') (t t') Set.image2 f s t Set.image2 f s' t'
      theorem Set.image2_inter_union_subset {α : Type u_1} {β : Type u_3} {f : ααβ} {s : Set α} {t : Set α} (hf : ∀ (a b : α), f a b = f b a) :
      Set.image2 f (s t) (s t) Set.image2 f s t
      theorem Set.image2_union_inter_subset {α : Type u_1} {β : Type u_3} {f : ααβ} {s : Set α} {t : Set α} (hf : ∀ (a b : α), f a b = f b a) :
      Set.image2 f (s t) (s t) Set.image2 f s t