Interactions between relation homomorphisms and sets #
It is likely that there are better homes for many of these statement, in files further down the import graph.
theorem
RelHomClass.map_inf
{α : Type u_1}
{β : Type u_2}
{F : Type u_5}
[SemilatticeInf α]
[LinearOrder β]
[RelHomClass F (fun (x x_1 : β) => x < x_1) fun (x x_1 : α) => x < x_1]
(a : F)
(m : β)
(n : β)
:
theorem
RelHomClass.map_sup
{α : Type u_1}
{β : Type u_2}
{F : Type u_5}
[SemilatticeSup α]
[LinearOrder β]
[RelHomClass F (fun (x x_1 : β) => x > x_1) fun (x x_1 : α) => x > x_1]
(a : F)
(m : β)
(n : β)
:
@[simp]
theorem
Subrel.relEmbedding_apply
{α : Type u_1}
(r : α → α → Prop)
(p : Set α)
(a : ↑p)
:
(Subrel.relEmbedding r p) a = ↑a
instance
Subrel.instIsWellOrderElemSubrel
{α : Type u_1}
(r : α → α → Prop)
[IsWellOrder α r]
(p : Set α)
:
IsWellOrder (↑p) (Subrel r p)
Equations
- (_ : IsWellOrder (↑p) (Subrel r p)) = (_ : IsWellOrder (↑p) (Subrel r p))
def
RelEmbedding.codRestrict
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{s : β → β → Prop}
(p : Set β)
(f : r ↪r s)
(H : ∀ (a : α), f a ∈ p)
:
Restrict the codomain of a relation embedding.
Equations
- RelEmbedding.codRestrict p f H = { toEmbedding := Function.Embedding.codRestrict p f.toEmbedding H, map_rel_iff' := (_ : ∀ {a b : α}, s (f.toEmbedding a) (f.toEmbedding b) ↔ r a b) }