Documentation

Mathlib.Order.SuccPred.Basic

Successor and predecessor #

This file defines successor and predecessor orders. succ a, the successor of an element a : α is the least element greater than a. pred a is the greatest element less than a. Typical examples include , , ℕ+, Fin n, but also ENat, the lexicographic order of a successor/predecessor order...

Typeclasses #

Implementation notes #

Maximal elements don't have a sensible successor. Thus the naïve typeclass

class NaiveSuccOrder (α : Type*) [Preorder α] :=
  (succ : α → α)
  (succ_le_iff : ∀ {a b}, succ a ≤ b ↔ a < b)
  (lt_succ_iff : ∀ {a b}, a < succ b ↔ a ≤ b)

can't apply to an OrderTop because plugging in a = b = ⊤ into either of succ_le_iff and lt_succ_iff yields ⊤ < ⊤ (or more generally m < m for a maximal element m). The solution taken here is to remove the implications ≤ → < and instead require that a < succ a for all non maximal elements (enforced by the combination of le_succ and the contrapositive of max_of_succ_le). The stricter condition of every element having a sensible successor can be obtained through the combination of SuccOrder α and NoMaxOrder α.

TODO #

Is GaloisConnection pred succ always true? If not, we should introduce

class SuccPredOrder (α : Type*) [Preorder α] extends SuccOrder α, PredOrder α :=
  (pred_succ_gc : GaloisConnection (pred : α → α) succ)

Covby should help here.

theorem SuccOrder.ext_iff {α : Type u_3} :
∀ {inst : Preorder α} (x y : SuccOrder α), x = y SuccOrder.succ = SuccOrder.succ
theorem SuccOrder.ext {α : Type u_3} :
∀ {inst : Preorder α} (x y : SuccOrder α), SuccOrder.succ = SuccOrder.succx = y
class SuccOrder (α : Type u_3) [Preorder α] :
Type u_3

Order equipped with a sensible successor function.

  • succ : αα

    Successor function

  • le_succ : ∀ (a : α), a SuccOrder.succ a

    Proof of basic ordering with respect to succ

  • max_of_succ_le : ∀ {a : α}, SuccOrder.succ a aIsMax a

    Proof of interaction between succ and maximal element

  • succ_le_of_lt : ∀ {a b : α}, a < bSuccOrder.succ a b

    Proof that succ satisfies ordering invariants between LT and LE

  • le_of_lt_succ : ∀ {a b : α}, a < SuccOrder.succ ba b

    Proof that succ satisfies ordering invariants between LE and LT

Instances
    theorem PredOrder.ext {α : Type u_3} :
    ∀ {inst : Preorder α} (x y : PredOrder α), PredOrder.pred = PredOrder.predx = y
    theorem PredOrder.ext_iff {α : Type u_3} :
    ∀ {inst : Preorder α} (x y : PredOrder α), x = y PredOrder.pred = PredOrder.pred
    class PredOrder (α : Type u_3) [Preorder α] :
    Type u_3

    Order equipped with a sensible predecessor function.

    • pred : αα

      Predecessor function

    • pred_le : ∀ (a : α), PredOrder.pred a a

      Proof of basic ordering with respect to pred

    • min_of_le_pred : ∀ {a : α}, a PredOrder.pred aIsMin a

      Proof of interaction between pred and minimal element

    • le_pred_of_lt : ∀ {a b : α}, a < ba PredOrder.pred b

      Proof that pred satisfies ordering invariants between LT and LE

    • le_of_pred_lt : ∀ {a b : α}, PredOrder.pred a < ba b

      Proof that pred satisfies ordering invariants between LE and LT

    Instances
      Equations
      • One or more equations did not get rendered due to their size.
      Equations
      • One or more equations did not get rendered due to their size.
      def SuccOrder.ofSuccLeIffOfLeLtSucc {α : Type u_1} [Preorder α] (succ : αα) (hsucc_le_iff : ∀ {a b : α}, succ a b a < b) (hle_of_lt_succ : ∀ {a b : α}, a < succ ba b) :

      A constructor for SuccOrder α usable when α has no maximal element.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        def PredOrder.ofLePredIffOfPredLePred {α : Type u_1} [Preorder α] (pred : αα) (hle_pred_iff : ∀ {a b : α}, a pred b a < b) (hle_of_pred_lt : ∀ {a b : α}, pred a < ba b) :

        A constructor for PredOrder α usable when α has no minimal element.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem SuccOrder.ofCore_succ {α : Type u_1} [LinearOrder α] (succ : αα) (hn : ∀ {a : α}, ¬IsMax a∀ (b : α), a < b succ a b) (hm : ∀ (a : α), IsMax asucc a = a) :
          ∀ (a : α), SuccOrder.succ a = succ a
          def SuccOrder.ofCore {α : Type u_1} [LinearOrder α] (succ : αα) (hn : ∀ {a : α}, ¬IsMax a∀ (b : α), a < b succ a b) (hm : ∀ (a : α), IsMax asucc a = a) :

          A constructor for SuccOrder α for α a linear order.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem PredOrder.ofCore_pred {α : Type u_3} [LinearOrder α] (pred : αα) (hn : ∀ {a : α}, ¬IsMin a∀ (b : α), b pred a b < a) (hm : ∀ (a : α), IsMin apred a = a) :
            ∀ (a : α), PredOrder.pred a = pred a
            def PredOrder.ofCore {α : Type u_3} [LinearOrder α] (pred : αα) (hn : ∀ {a : α}, ¬IsMin a∀ (b : α), b pred a b < a) (hm : ∀ (a : α), IsMin apred a = a) :

            A constructor for PredOrder α for α a linear order.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def SuccOrder.ofSuccLeIff {α : Type u_1} [LinearOrder α] (succ : αα) (hsucc_le_iff : ∀ {a b : α}, succ a b a < b) :

              A constructor for SuccOrder α usable when α is a linear order with no maximal element.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def PredOrder.ofLePredIff {α : Type u_1} [LinearOrder α] (pred : αα) (hle_pred_iff : ∀ {a b : α}, a pred b a < b) :

                A constructor for PredOrder α usable when α is a linear order with no minimal element.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  Successor order #

                  def Order.succ {α : Type u_1} [Preorder α] [SuccOrder α] :
                  αα

                  The successor of an element. If a is not maximal, then succ a is the least element greater than a. If a is maximal, then succ a = a.

                  Equations
                  • Order.succ = SuccOrder.succ
                  Instances For
                    theorem Order.le_succ {α : Type u_1} [Preorder α] [SuccOrder α] (a : α) :
                    theorem Order.max_of_succ_le {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} :
                    Order.succ a aIsMax a
                    theorem Order.succ_le_of_lt {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} :
                    a < bOrder.succ a b
                    theorem Order.le_of_lt_succ {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} :
                    a < Order.succ ba b
                    @[simp]
                    theorem Order.succ_le_iff_isMax {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} :
                    @[simp]
                    theorem Order.lt_succ_iff_not_isMax {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} :
                    theorem Order.lt_succ_of_not_isMax {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} :
                    ¬IsMax aa < Order.succ a

                    Alias of the reverse direction of Order.lt_succ_iff_not_isMax.

                    theorem Order.wcovby_succ {α : Type u_1} [Preorder α] [SuccOrder α] (a : α) :
                    theorem Order.covby_succ_of_not_isMax {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} (h : ¬IsMax a) :
                    theorem Order.lt_succ_iff_of_not_isMax {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} (ha : ¬IsMax a) :
                    theorem Order.succ_le_iff_of_not_isMax {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} (ha : ¬IsMax a) :
                    theorem Order.succ_lt_succ_of_not_isMax {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} (h : a < b) (hb : ¬IsMax b) :
                    theorem Order.succ_lt_succ_iff_of_not_isMax {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} (ha : ¬IsMax a) (hb : ¬IsMax b) :
                    theorem Order.succ_le_succ_iff_of_not_isMax {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} (ha : ¬IsMax a) (hb : ¬IsMax b) :
                    @[simp]
                    theorem Order.succ_le_succ {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} (h : a b) :
                    theorem Order.succ_mono {α : Type u_1} [Preorder α] [SuccOrder α] :
                    Monotone Order.succ
                    theorem Order.le_succ_iterate {α : Type u_1} [Preorder α] [SuccOrder α] (k : ) (x : α) :
                    theorem Order.isMax_iterate_succ_of_eq_of_lt {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {n : } {m : } (h_eq : Order.succ^[n] a = Order.succ^[m] a) (h_lt : n < m) :
                    theorem Order.isMax_iterate_succ_of_eq_of_ne {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {n : } {m : } (h_eq : Order.succ^[n] a = Order.succ^[m] a) (h_ne : n m) :
                    theorem Order.Iio_succ_of_not_isMax {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} (ha : ¬IsMax a) :
                    theorem Order.Ici_succ_of_not_isMax {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} (ha : ¬IsMax a) :
                    theorem Order.Ico_succ_right_of_not_isMax {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} (hb : ¬IsMax b) :
                    theorem Order.Ioo_succ_right_of_not_isMax {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} (hb : ¬IsMax b) :
                    theorem Order.Icc_succ_left_of_not_isMax {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} (ha : ¬IsMax a) :
                    theorem Order.Ico_succ_left_of_not_isMax {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} (ha : ¬IsMax a) :
                    theorem Order.lt_succ {α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a : α) :
                    @[simp]
                    theorem Order.lt_succ_iff {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} [NoMaxOrder α] :
                    @[simp]
                    theorem Order.succ_le_iff {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} [NoMaxOrder α] :
                    theorem Order.succ_le_succ_iff {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} [NoMaxOrder α] :
                    theorem Order.succ_lt_succ_iff {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} [NoMaxOrder α] :
                    theorem Order.le_of_succ_le_succ {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} [NoMaxOrder α] :

                    Alias of the forward direction of Order.succ_le_succ_iff.

                    theorem Order.succ_lt_succ {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} [NoMaxOrder α] :
                    a < bOrder.succ a < Order.succ b

                    Alias of the reverse direction of Order.succ_lt_succ_iff.

                    theorem Order.lt_of_succ_lt_succ {α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {b : α} [NoMaxOrder α] :
                    Order.succ a < Order.succ ba < b

                    Alias of the forward direction of Order.succ_lt_succ_iff.

                    theorem Order.succ_strictMono {α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] :
                    StrictMono Order.succ
                    theorem Order.covby_succ {α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a : α) :
                    @[simp]
                    theorem Order.Iio_succ {α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a : α) :
                    @[simp]
                    theorem Order.Ici_succ {α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a : α) :
                    @[simp]
                    theorem Order.Ico_succ_right {α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a : α) (b : α) :
                    @[simp]
                    theorem Order.Ioo_succ_right {α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a : α) (b : α) :
                    @[simp]
                    theorem Order.Icc_succ_left {α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a : α) (b : α) :
                    @[simp]
                    theorem Order.Ico_succ_left {α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a : α) (b : α) :
                    @[simp]
                    theorem Order.succ_eq_iff_isMax {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} :
                    theorem IsMax.succ_eq {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} :
                    IsMax aOrder.succ a = a

                    Alias of the reverse direction of Order.succ_eq_iff_isMax.

                    theorem Order.succ_eq_succ_iff_of_not_isMax {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} (ha : ¬IsMax a) (hb : ¬IsMax b) :
                    theorem Order.le_le_succ_iff {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} :
                    theorem Covby.succ_eq {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} (h : a b) :
                    theorem Wcovby.le_succ {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} (h : a ⩿ b) :
                    theorem Order.le_succ_iff_eq_or_le {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} :
                    theorem Order.lt_succ_iff_eq_or_lt_of_not_isMax {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} (hb : ¬IsMax b) :
                    a < Order.succ b a = b a < b
                    theorem Order.Iic_succ {α : Type u_1} [PartialOrder α] [SuccOrder α] (a : α) :
                    theorem Order.Icc_succ_right {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} (h : a Order.succ b) :
                    theorem Order.Ioc_succ_right {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} (h : a < Order.succ b) :
                    theorem Order.Ico_succ_right_eq_insert_of_not_isMax {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} (h₁ : a b) (h₂ : ¬IsMax b) :
                    theorem Order.Ioo_succ_right_eq_insert_of_not_isMax {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} (h₁ : a < b) (h₂ : ¬IsMax b) :
                    @[simp]
                    theorem Order.succ_eq_succ_iff {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} [NoMaxOrder α] :
                    theorem Order.succ_ne_succ_iff {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} [NoMaxOrder α] :
                    theorem Order.succ_ne_succ {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} [NoMaxOrder α] :

                    Alias of the reverse direction of Order.succ_ne_succ_iff.

                    theorem Order.lt_succ_iff_eq_or_lt {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} [NoMaxOrder α] :
                    a < Order.succ b a = b a < b
                    theorem Order.succ_eq_iff_covby {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} [NoMaxOrder α] :
                    theorem Order.Ico_succ_right_eq_insert {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} [NoMaxOrder α] (h : a b) :
                    theorem Order.Ioo_succ_right_eq_insert {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} {b : α} [NoMaxOrder α] (h : a < b) :
                    @[simp]
                    theorem Order.succ_top {α : Type u_1} [PartialOrder α] [SuccOrder α] [OrderTop α] :
                    theorem Order.succ_le_iff_eq_top {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} [OrderTop α] :
                    theorem Order.lt_succ_iff_ne_top {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} [OrderTop α] :
                    theorem Order.lt_succ_bot_iff {α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} [OrderBot α] [NoMaxOrder α] :
                    theorem Order.bot_lt_succ {α : Type u_1} [PartialOrder α] [SuccOrder α] [OrderBot α] [Nontrivial α] (a : α) :
                    theorem Order.succ_ne_bot {α : Type u_1} [PartialOrder α] [SuccOrder α] [OrderBot α] [Nontrivial α] (a : α) :

                    There is at most one way to define the successors in a PartialOrder.

                    Equations
                    theorem Order.succ_eq_iInf {α : Type u_1} [CompleteLattice α] [SuccOrder α] (a : α) :
                    Order.succ a = ⨅ (b : α), ⨅ (_ : a < b), b

                    Predecessor order #

                    def Order.pred {α : Type u_1} [Preorder α] [PredOrder α] :
                    αα

                    The predecessor of an element. If a is not minimal, then pred a is the greatest element less than a. If a is minimal, then pred a = a.

                    Equations
                    • Order.pred = PredOrder.pred
                    Instances For
                      theorem Order.pred_le {α : Type u_1} [Preorder α] [PredOrder α] (a : α) :
                      theorem Order.min_of_le_pred {α : Type u_1} [Preorder α] [PredOrder α] {a : α} :
                      a Order.pred aIsMin a
                      theorem Order.le_pred_of_lt {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} :
                      a < ba Order.pred b
                      theorem Order.le_of_pred_lt {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} :
                      Order.pred a < ba b
                      @[simp]
                      theorem Order.le_pred_iff_isMin {α : Type u_1} [Preorder α] [PredOrder α] {a : α} :
                      @[simp]
                      theorem Order.pred_lt_iff_not_isMin {α : Type u_1} [Preorder α] [PredOrder α] {a : α} :
                      theorem Order.pred_lt_of_not_isMin {α : Type u_1} [Preorder α] [PredOrder α] {a : α} :
                      ¬IsMin aOrder.pred a < a

                      Alias of the reverse direction of Order.pred_lt_iff_not_isMin.

                      theorem Order.pred_wcovby {α : Type u_1} [Preorder α] [PredOrder α] (a : α) :
                      theorem Order.pred_covby_of_not_isMin {α : Type u_1} [Preorder α] [PredOrder α] {a : α} (h : ¬IsMin a) :
                      theorem Order.pred_lt_iff_of_not_isMin {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} (ha : ¬IsMin a) :
                      theorem Order.le_pred_iff_of_not_isMin {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} (ha : ¬IsMin a) :
                      theorem Order.pred_lt_pred_of_not_isMin {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} (h : a < b) (ha : ¬IsMin a) :
                      @[simp]
                      theorem Order.pred_le_pred {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} (h : a b) :
                      theorem Order.pred_mono {α : Type u_1} [Preorder α] [PredOrder α] :
                      Monotone Order.pred
                      theorem Order.pred_iterate_le {α : Type u_1} [Preorder α] [PredOrder α] (k : ) (x : α) :
                      theorem Order.isMin_iterate_pred_of_eq_of_lt {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {n : } {m : } (h_eq : Order.pred^[n] a = Order.pred^[m] a) (h_lt : n < m) :
                      theorem Order.isMin_iterate_pred_of_eq_of_ne {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {n : } {m : } (h_eq : Order.pred^[n] a = Order.pred^[m] a) (h_ne : n m) :
                      theorem Order.Ioi_pred_of_not_isMin {α : Type u_1} [Preorder α] [PredOrder α] {a : α} (ha : ¬IsMin a) :
                      theorem Order.Iic_pred_of_not_isMin {α : Type u_1} [Preorder α] [PredOrder α] {a : α} (ha : ¬IsMin a) :
                      theorem Order.Ioc_pred_left_of_not_isMin {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} (ha : ¬IsMin a) :
                      theorem Order.Ioo_pred_left_of_not_isMin {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} (ha : ¬IsMin a) :
                      theorem Order.Icc_pred_right_of_not_isMin {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} (ha : ¬IsMin b) :
                      theorem Order.Ioc_pred_right_of_not_isMin {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} (ha : ¬IsMin b) :
                      theorem Order.pred_lt {α : Type u_1} [Preorder α] [PredOrder α] [NoMinOrder α] (a : α) :
                      @[simp]
                      theorem Order.pred_lt_iff {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} [NoMinOrder α] :
                      @[simp]
                      theorem Order.le_pred_iff {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} [NoMinOrder α] :
                      theorem Order.pred_le_pred_iff {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} [NoMinOrder α] :
                      theorem Order.pred_lt_pred_iff {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} [NoMinOrder α] :
                      theorem Order.le_of_pred_le_pred {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} [NoMinOrder α] :

                      Alias of the forward direction of Order.pred_le_pred_iff.

                      theorem Order.lt_of_pred_lt_pred {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} [NoMinOrder α] :
                      Order.pred a < Order.pred ba < b

                      Alias of the forward direction of Order.pred_lt_pred_iff.

                      theorem Order.pred_lt_pred {α : Type u_1} [Preorder α] [PredOrder α] {a : α} {b : α} [NoMinOrder α] :
                      a < bOrder.pred a < Order.pred b

                      Alias of the reverse direction of Order.pred_lt_pred_iff.

                      theorem Order.pred_strictMono {α : Type u_1} [Preorder α] [PredOrder α] [NoMinOrder α] :
                      StrictMono Order.pred
                      theorem Order.pred_covby {α : Type u_1} [Preorder α] [PredOrder α] [NoMinOrder α] (a : α) :
                      @[simp]
                      theorem Order.Ioi_pred {α : Type u_1} [Preorder α] [PredOrder α] [NoMinOrder α] (a : α) :
                      @[simp]
                      theorem Order.Iic_pred {α : Type u_1} [Preorder α] [PredOrder α] [NoMinOrder α] (a : α) :
                      @[simp]
                      theorem Order.Ioc_pred_left {α : Type u_1} [Preorder α] [PredOrder α] [NoMinOrder α] (a : α) (b : α) :
                      @[simp]
                      theorem Order.Ioo_pred_left {α : Type u_1} [Preorder α] [PredOrder α] [NoMinOrder α] (a : α) (b : α) :
                      @[simp]
                      theorem Order.Icc_pred_right {α : Type u_1} [Preorder α] [PredOrder α] [NoMinOrder α] (a : α) (b : α) :
                      @[simp]
                      theorem Order.Ioc_pred_right {α : Type u_1} [Preorder α] [PredOrder α] [NoMinOrder α] (a : α) (b : α) :
                      @[simp]
                      theorem Order.pred_eq_iff_isMin {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} :
                      theorem IsMin.pred_eq {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} :
                      IsMin aOrder.pred a = a

                      Alias of the reverse direction of Order.pred_eq_iff_isMin.

                      theorem Order.pred_le_le_iff {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} {b : α} :
                      theorem Covby.pred_eq {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} {b : α} (h : a b) :
                      theorem Wcovby.pred_le {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} {b : α} (h : a ⩿ b) :
                      theorem Order.pred_le_iff_eq_or_le {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} {b : α} :
                      theorem Order.pred_lt_iff_eq_or_lt_of_not_isMin {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} {b : α} (ha : ¬IsMin a) :
                      Order.pred a < b a = b a < b
                      theorem Order.Ici_pred {α : Type u_1} [PartialOrder α] [PredOrder α] (a : α) :
                      theorem Order.Icc_pred_left {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} {b : α} (h : Order.pred a b) :
                      theorem Order.Ico_pred_left {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} {b : α} (h : Order.pred a < b) :
                      @[simp]
                      theorem Order.pred_eq_pred_iff {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} {b : α} [NoMinOrder α] :
                      theorem Order.pred_ne_pred_iff {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} {b : α} [NoMinOrder α] :
                      theorem Order.pred_ne_pred {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} {b : α} [NoMinOrder α] :

                      Alias of the reverse direction of Order.pred_ne_pred_iff.

                      theorem Order.pred_lt_iff_eq_or_lt {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} {b : α} [NoMinOrder α] :
                      Order.pred a < b a = b a < b
                      theorem Order.pred_eq_iff_covby {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} {b : α} [NoMinOrder α] :
                      theorem Order.Ico_pred_right_eq_insert {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} {b : α} [NoMinOrder α] (h : a b) :
                      theorem Order.Ioo_pred_right_eq_insert {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} {b : α} [NoMinOrder α] (h : a < b) :
                      @[simp]
                      theorem Order.pred_bot {α : Type u_1} [PartialOrder α] [PredOrder α] [OrderBot α] :
                      theorem Order.le_pred_iff_eq_bot {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} [OrderBot α] :
                      theorem Order.pred_lt_iff_ne_bot {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} [OrderBot α] :
                      theorem Order.pred_top_lt_iff {α : Type u_1} [PartialOrder α] [PredOrder α] {a : α} [OrderTop α] [NoMinOrder α] :
                      theorem Order.pred_lt_top {α : Type u_1} [PartialOrder α] [PredOrder α] [OrderTop α] [Nontrivial α] (a : α) :
                      theorem Order.pred_ne_top {α : Type u_1} [PartialOrder α] [PredOrder α] [OrderTop α] [Nontrivial α] (a : α) :

                      There is at most one way to define the predecessors in a PartialOrder.

                      Equations
                      theorem Order.pred_eq_iSup {α : Type u_1} [CompleteLattice α] [PredOrder α] (a : α) :
                      Order.pred a = ⨆ (b : α), ⨆ (_ : b < a), b

                      Successor-predecessor orders #

                      @[simp]
                      theorem Order.succ_pred_of_not_isMin {α : Type u_1} [PartialOrder α] [SuccOrder α] [PredOrder α] {a : α} (h : ¬IsMin a) :
                      @[simp]
                      theorem Order.pred_succ_of_not_isMax {α : Type u_1} [PartialOrder α] [SuccOrder α] [PredOrder α] {a : α} (h : ¬IsMax a) :
                      theorem Order.succ_pred {α : Type u_1} [PartialOrder α] [SuccOrder α] [PredOrder α] [NoMinOrder α] (a : α) :
                      theorem Order.pred_succ {α : Type u_1} [PartialOrder α] [SuccOrder α] [PredOrder α] [NoMaxOrder α] (a : α) :

                      WithBot, WithTop #

                      Adding a greatest/least element to a SuccOrder or to a PredOrder.

                      As far as successors and predecessors are concerned, there are four ways to add a bottom or top element to an order:

                      Adding a to an OrderTop #

                      Equations
                      • One or more equations did not get rendered due to their size.
                      @[simp]
                      theorem WithTop.succ_coe_of_ne_top {α : Type u_1} [DecidableEq α] [PartialOrder α] [OrderTop α] [SuccOrder α] {a : α} (h : a ) :
                      Order.succ a = (Order.succ a)
                      Equations
                      • One or more equations did not get rendered due to their size.
                      @[simp]
                      theorem WithTop.pred_top {α : Type u_1} [Preorder α] [OrderTop α] [PredOrder α] :
                      @[simp]
                      theorem WithTop.pred_coe {α : Type u_1} [Preorder α] [OrderTop α] [PredOrder α] (a : α) :
                      Order.pred a = (Order.pred a)
                      @[simp]
                      theorem WithTop.pred_untop {α : Type u_1} [Preorder α] [OrderTop α] [PredOrder α] (a : WithTop α) (ha : a ) :

                      Adding a to a NoMaxOrder #

                      Equations
                      • One or more equations did not get rendered due to their size.
                      @[simp]
                      theorem WithTop.succ_coe {α : Type u_1} [Preorder α] [NoMaxOrder α] [SuccOrder α] (a : α) :
                      Order.succ a = (Order.succ a)

                      Adding a to an OrderBot #

                      Equations
                      • One or more equations did not get rendered due to their size.
                      @[simp]
                      theorem WithBot.succ_bot {α : Type u_1} [Preorder α] [OrderBot α] [SuccOrder α] :
                      @[simp]
                      theorem WithBot.succ_coe {α : Type u_1} [Preorder α] [OrderBot α] [SuccOrder α] (a : α) :
                      Order.succ a = (Order.succ a)
                      @[simp]
                      theorem WithBot.succ_unbot {α : Type u_1} [Preorder α] [OrderBot α] [SuccOrder α] (a : WithBot α) (ha : a ) :
                      Equations
                      • One or more equations did not get rendered due to their size.
                      @[simp]
                      theorem WithBot.pred_coe_of_ne_bot {α : Type u_1} [DecidableEq α] [PartialOrder α] [OrderBot α] [PredOrder α] {a : α} (h : a ) :
                      Order.pred a = (Order.pred a)

                      Adding a to a NoMinOrder #

                      Equations
                      • One or more equations did not get rendered due to their size.
                      @[simp]
                      theorem WithBot.pred_coe {α : Type u_1} [Preorder α] [NoMinOrder α] [PredOrder α] (a : α) :
                      Order.pred a = (Order.pred a)

                      Archimedeanness #

                      class IsSuccArchimedean (α : Type u_3) [Preorder α] [SuccOrder α] :

                      A SuccOrder is succ-archimedean if one can go from any two comparable elements by iterating succ

                      • exists_succ_iterate_of_le : ∀ {a b : α}, a b∃ (n : ), Order.succ^[n] a = b

                        If a ≤ b then one can get to a from b by iterating succ

                      Instances
                        class IsPredArchimedean (α : Type u_3) [Preorder α] [PredOrder α] :

                        A PredOrder is pred-archimedean if one can go from any two comparable elements by iterating pred

                        • exists_pred_iterate_of_le : ∀ {a b : α}, a b∃ (n : ), Order.pred^[n] b = a

                          If a ≤ b then one can get to b from a by iterating pred

                        Instances
                          theorem LE.le.exists_succ_iterate {α : Type u_1} [Preorder α] [SuccOrder α] [IsSuccArchimedean α] {a : α} {b : α} (h : a b) :
                          ∃ (n : ), Order.succ^[n] a = b
                          theorem exists_succ_iterate_iff_le {α : Type u_1} [Preorder α] [SuccOrder α] [IsSuccArchimedean α] {a : α} {b : α} :
                          (∃ (n : ), Order.succ^[n] a = b) a b
                          theorem Succ.rec {α : Type u_1} [Preorder α] [SuccOrder α] [IsSuccArchimedean α] {P : αProp} {m : α} (h0 : P m) (h1 : ∀ (n : α), m nP nP (Order.succ n)) ⦃n : α (hmn : m n) :
                          P n

                          Induction principle on a type with a SuccOrder for all elements above a given element m.

                          theorem Succ.rec_iff {α : Type u_1} [Preorder α] [SuccOrder α] [IsSuccArchimedean α] {p : αProp} (hsucc : ∀ (a : α), p a p (Order.succ a)) {a : α} {b : α} (h : a b) :
                          p a p b
                          theorem LE.le.exists_pred_iterate {α : Type u_1} [Preorder α] [PredOrder α] [IsPredArchimedean α] {a : α} {b : α} (h : a b) :
                          ∃ (n : ), Order.pred^[n] b = a
                          theorem exists_pred_iterate_iff_le {α : Type u_1} [Preorder α] [PredOrder α] [IsPredArchimedean α] {a : α} {b : α} :
                          (∃ (n : ), Order.pred^[n] b = a) a b
                          theorem Pred.rec {α : Type u_1} [Preorder α] [PredOrder α] [IsPredArchimedean α] {P : αProp} {m : α} (h0 : P m) (h1 : nm, P nP (Order.pred n)) ⦃n : α (hmn : n m) :
                          P n

                          Induction principle on a type with a PredOrder for all elements below a given element m.

                          theorem Pred.rec_iff {α : Type u_1} [Preorder α] [PredOrder α] [IsPredArchimedean α] {p : αProp} (hsucc : ∀ (a : α), p a p (Order.pred a)) {a : α} {b : α} (h : a b) :
                          p a p b
                          theorem exists_succ_iterate_or {α : Type u_1} [LinearOrder α] [SuccOrder α] [IsSuccArchimedean α] {a : α} {b : α} :
                          (∃ (n : ), Order.succ^[n] a = b) ∃ (n : ), Order.succ^[n] b = a
                          theorem Succ.rec_linear {α : Type u_1} [LinearOrder α] [SuccOrder α] [IsSuccArchimedean α] {p : αProp} (hsucc : ∀ (a : α), p a p (Order.succ a)) (a : α) (b : α) :
                          p a p b
                          theorem exists_pred_iterate_or {α : Type u_1} [LinearOrder α] [PredOrder α] [IsPredArchimedean α] {a : α} {b : α} :
                          (∃ (n : ), Order.pred^[n] b = a) ∃ (n : ), Order.pred^[n] a = b
                          theorem Pred.rec_linear {α : Type u_1} [LinearOrder α] [PredOrder α] [IsPredArchimedean α] {p : αProp} (hsucc : ∀ (a : α), p a p (Order.pred a)) (a : α) (b : α) :
                          p a p b
                          theorem StrictMono.not_bddAbove_range {α : Type u_1} {β : Type u_2} [Preorder α] [Nonempty α] [Preorder β] {f : αβ} [NoMaxOrder α] [SuccOrder β] [IsSuccArchimedean β] (hf : StrictMono f) :
                          theorem StrictMono.not_bddBelow_range {α : Type u_1} {β : Type u_2} [Preorder α] [Nonempty α] [Preorder β] {f : αβ} [NoMinOrder α] [PredOrder β] [IsPredArchimedean β] (hf : StrictMono f) :
                          theorem StrictAnti.not_bddAbove_range {α : Type u_1} {β : Type u_2} [Preorder α] [Nonempty α] [Preorder β] {f : αβ} [NoMinOrder α] [SuccOrder β] [IsSuccArchimedean β] (hf : StrictAnti f) :
                          theorem StrictAnti.not_bddBelow_range {α : Type u_1} {β : Type u_2} [Preorder α] [Nonempty α] [Preorder β] {f : αβ} [NoMaxOrder α] [PredOrder β] [IsPredArchimedean β] (hf : StrictAnti f) :
                          instance IsWellOrder.toIsPredArchimedean {α : Type u_1} [LinearOrder α] [h : IsWellOrder α fun (x x_1 : α) => x < x_1] [PredOrder α] :
                          Equations
                          instance IsWellOrder.toIsSuccArchimedean {α : Type u_1} [LinearOrder α] [h : IsWellOrder α fun (x x_1 : α) => x > x_1] [SuccOrder α] :
                          Equations
                          theorem Succ.rec_bot {α : Type u_1} [Preorder α] [OrderBot α] [SuccOrder α] [IsSuccArchimedean α] (p : αProp) (hbot : p ) (hsucc : ∀ (a : α), p ap (Order.succ a)) (a : α) :
                          p a
                          theorem Pred.rec_top {α : Type u_1} [Preorder α] [OrderTop α] [PredOrder α] [IsPredArchimedean α] (p : αProp) (htop : p ) (hpred : ∀ (a : α), p ap (Order.pred a)) (a : α) :
                          p a
                          theorem SuccOrder.forall_ne_bot_iff {α : Type u_1} [Nontrivial α] [PartialOrder α] [OrderBot α] [SuccOrder α] [IsSuccArchimedean α] (P : αProp) :
                          (∀ (i : α), i P i) ∀ (i : α), P (SuccOrder.succ i)