Documentation

Common.Set.Basic

Common.Set.Basic #

Additional theorems and definitions useful in the context of Sets.

Minkowski Sum #

def Set.minkowskiSum {α : Type u} [Add α] (s : Set α) (t : Set α) :
Set α
Equations
Instances For

    The sum of two Sets is nonempty iff the summands are nonempty.

    Pair Sets #

    theorem Set.pair_eq_singleton_mem_imp_eq_self {α : Type u_1} {x : α} {y : α} (h : {x, y} = {x}) :
    y = x

    If {x, y} = {x} then x = y.

    theorem Set.pair_eq_singleton_mem_imp_eq_all {α : Type u_1} {x : α} {y : α} {z : α} (h : {x, y} = {z}) :
    x = z y = z

    If {x, y} = {z} then x = y = z.

    Subsets #

    theorem Set.ssubset_empty_iff_false {α : Type u_1} (S : Set α) :

    There exists no proper subset of .

    theorem Set.left_subset_union_eq_self {α : Type u_1} {A : Set α} {B : Set α} (h : A B) :
    A B = B

    If Set A is a subset of Set B, then A ∪ B = B.

    theorem Set.right_subset_union_eq_self {α : Type u_1} {A : Set α} {B : Set α} (h : B A) :
    A B = A

    If Set B is a subset of Set A, then A ∪ B = B.

    theorem Set.mem_mem_imp_pair_subset {α : Type u_1} {A : Set α} {x : α} {y : α} (hx : x A) (hy : y A) :
    {x, y} A

    If x and y are members of Set A, it follows {x, y} is a subset of A.

    Powerset #

    theorem Set.self_mem_powerset_self {α : Type u_1} {A : Set α} :
    A 𝒫 A

    Every Set is a member of its own powerset.

    Cartesian Product #

    theorem Set.prod_left_emptyset_eq_emptyset {α : Type u_1} {β : Type u_2} {A : Set α} :

    For any Set A, ∅ × A = ∅.

    theorem Set.prod_right_emptyset_eq_emptyset {α : Type u_1} {β : Type u_2} {A : Set α} :

    For any Set A, A × ∅ = ∅.

    theorem Set.prod_nonempty_nonempty_imp_nonempty_prod {α : Type u_1} {β : Type u_2} {A : Set α} {B : Set β} :

    For any Sets A and B, if both A and B are nonempty, then A × B is also nonempty.

    Difference #

    theorem Set.diff_ssubset_diff_left {α : Type u_1} {x : α} {A : Set α} {B : Set α} (h : A B) :
    x AA \ {x} B \ {x}

    For any sets A ⊂ B, if x ∈ A then A - {x} ⊂ B - {x}.

    theorem Set.diff_ssubset_nonempty {α : Type u_1} {A : Set α} {B : Set α} (h : A B) :

    For any sets A ⊂ B, B \ A is nonempty.

    theorem Set.not_mem_diff_eq_self {α : Type u_1} {a : α} {A : Set α} (h : aA) :
    A \ {a} = A

    If an element x is not a member of a set A, then A - {x} = A.

    theorem Set.diff_mem_diff_mem_eq_diff_diff_mem {α : Type u_1} {A : Set α} {B : Set α} {a : α} :
    (A \ {a}) \ (B \ {a}) = (A \ B) \ {a}

    Given two sets A and B, (A - {a}) - (B - {b}) = (A - B) - {a}.

    theorem Set.univ_diff_self_eq_compl {α : Type u_1} (A : Set α) :
    Set.univ \ A = Set.compl A

    For any set A, the difference between the sample space and A is the complement of A.

    theorem Set.univ_diff_compl_eq_self {α : Type u_1} (A : Set α) :
    Set.univ \ Set.compl A = A

    For any set A, the difference between the sample space and the complement of A is A.

    Symmetric Difference #

    theorem Set.symm_diff_mem_left {α : Type u_1} {x : α} {A : Set α} {B : Set α} (hA : x A) (hB : xB) :
    x A B

    If x ∈ A and x ∉ B, then x ∈ A ∆ B.

    theorem Set.symm_diff_mem_right {α : Type u_1} {x : α} {A : Set α} {B : Set α} (hA : xA) (hB : x B) :
    x A B

    If x ∉ A and x ∈ B, then x ∈ A ∆ B.

    theorem Set.symm_diff_mem_both_not_mem {α : Type u_1} {x : α} {A : Set α} {B : Set α} (hA : x A) (hB : x B) :
    xA B

    If x ∈ A and x ∈ B, then x ∉ A ∆ B.

    theorem Set.symm_diff_not_mem_both_not_mem {α : Type u_1} {x : α} {A : Set α} {B : Set α} (nA : xA) (nB : xB) :
    xA B

    If x ∉ A and x ∉ B, then x ∉ A ∆ B.

    theorem Set.mem_symm_diff_iff_exclusive_mem {α : Type u_1} {x : α} {A : Set α} {B : Set α} :
    x A B x A xB xA x B

    x is a member of the symmDiff of A and B iff x ∈ A ∧ x ∉ B or x ∉ A ∧ x ∈ B.

    theorem Set.not_mem_symm_diff_inter_or_not_union {α : Type u_1} {x : α} {A : Set α} {B : Set α} :
    xA B x A B xA B

    x is not a member of the symmDiff of A and B iff x ∈ A ∩ B or x ∉ A ∪ B.

    This is the contraposition of mem_symm_diff_iff_exclusive_mem.