Minkowski Sum #
theorem
Set.nonempty_minkowski_sum_iff_nonempty_add_nonempty
{α : Type u}
[Add α]
{s : Set α}
{t : Set α}
:
Set.Nonempty (Set.minkowskiSum s t) ↔ Set.Nonempty s ∧ Set.Nonempty t
The sum of two Set
s is nonempty iff the summands are nonempty.
Pair Sets #
theorem
Set.pair_eq_singleton_mem_imp_eq_self
{α : Type u_1}
{x : α}
{y : α}
(h : {x, y} = {x})
:
y = x
If {x, y} = {x}
then x = y
.
Subsets #
Powerset #
Cartesian Product #
Difference #
theorem
Set.diff_ssubset_nonempty
{α : Type u_1}
{A : Set α}
{B : Set α}
(h : A ⊂ B)
:
Set.Nonempty (B \ A)
For any sets A ⊂ B
, B \ A
is nonempty.