Common.Set.Finite #
Additional theorems around finite sets.
Definitions #
Equations
- Set.«term_≈_» = Lean.ParserDescr.trailingNode `Set.term_≈_ 50 51 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ≈ ") (Lean.ParserDescr.cat `term 51))
Instances For
Equations
- Set.«term_≉_» = Lean.ParserDescr.trailingNode `Set.term_≉_ 50 51 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ≉ ") (Lean.ParserDescr.cat `term 51))
Instances For
Finite Sets #
axiom
Set.finite_iff_equinumerous_nat
{α : Type u_1}
{S : Set α}
:
Set.Finite S ↔ ∃ (n : ℕ), S ≈ Set.Iio n
A set is finite if and only if it is equinumerous to a natural number.