Documentation

Common.Set.Equinumerous

Common.Set.Finite #

Additional theorems around finite sets.

Definitions #

def Set.Equinumerous {α : Type u_1} {β : Type u_2} (A : Set α) (B : Set β) :

A set A is equinumerous to a set B (written A ≈ B) if and only if there is a one-to-one function from A onto B.

Equations
Instances For
    theorem Set.equinumerous_def {α : Type u_1} {β : Type u_2} (A : Set α) (B : Set β) :
    A B ∃ (F : αβ), Set.BijOn F A B
    def Set.NotEquinumerous {α : Type u_1} {β : Type u_2} (A : Set α) (B : Set β) :

    A set A is not equinumerous to a set B (written A ≉ B) if and only if there is no one-to-one function from A onto B.

    Equations
    Instances For
      @[simp]
      theorem Set.not_equinumerous_def :
      ∀ {α : Type u_1} {A : Set α} {α_1 : Type u_2} {B : Set α_1}, A B ∀ (F : αα_1), ¬Set.BijOn F A B
      theorem Set.equinumerous_refl {α : Type u_1} (A : Set α) :
      A A

      For any set A, A ≈ A.

      theorem Set.equinumerous_symm {α : Type u_1} {β : Type u_2} [Nonempty α] {A : Set α} {B : Set β} (h : A B) :
      B A

      For any sets A and B, if A ≈ B. then B ≈ A.

      theorem Set.equinumerous_trans {α : Type u_1} {β : Type u_2} {γ : Type u_3} {A : Set α} {B : Set β} {C : Set γ} (h₁ : A B) (h₂ : B C) :
      ∃ (H : αγ), Set.BijOn H A C

      For any sets A, B, and C, if A ≈ B and B ≈ C, then A ≈ C.

      theorem Set.eq_imp_equinumerous {α : Type u_1} {A : Set α} {B : Set α} (h : A = B) :
      A B

      If two sets are equal, they are trivially equinumerous.

      Finite Sets #

      axiom Set.finite_iff_equinumerous_nat {α : Type u_1} {S : Set α} :
      Set.Finite S ∃ (n : ), S Set.Iio n

      A set is finite if and only if it is equinumerous to a natural number.

      Emptyset #

      @[simp]
      theorem Set.equinumerous_zero_iff_emptyset {α : Type u_1} {S : Set α} :

      Any set equinumerous to the emptyset is the emptyset.

      theorem Set.equinumerous_emptyset_emptyset {β : Type u_1} {α : Type u_2} [Bot β] :

      Empty sets are always equinumerous, regardless of their underlying type.

      For all natural numbers m, n, m⁺ - n⁺ ≈ m - n.

      For all natural numbers m, n, m - n ∪ {m} ≈ m - n.