Lemmas about the interaction of power operations with order #
Note that some lemmas are in Algebra/GroupPower/Lemmas.lean
as they import files which
depend on this file.
theorem
CanonicallyOrderedCommSemiring.pow_pos
{R : Type u_2}
[CanonicallyOrderedCommSemiring R]
{a : R}
(H : 0 < a)
(n : ℕ)
:
theorem
pow_le_pow_of_le_left
{R : Type u_2}
[OrderedSemiring R]
{a : R}
{b : R}
(ha : 0 ≤ a)
(hab : a ≤ b)
(i : ℕ)
:
theorem
strictMonoOn_pow
{R : Type u_2}
[StrictOrderedSemiring R]
{n : ℕ}
(hn : 0 < n)
:
StrictMonoOn (fun (x : R) => x ^ n) (Set.Ici 0)
theorem
pow_strictMono_right
{R : Type u_2}
[StrictOrderedSemiring R]
{a : R}
(h : 1 < a)
:
StrictMono fun (n : ℕ) => a ^ n
theorem
self_lt_pow
{R : Type u_2}
[StrictOrderedSemiring R]
{a : R}
{m : ℕ}
(h : 1 < a)
(h2 : 1 < m)
:
theorem
self_le_pow
{R : Type u_2}
[StrictOrderedSemiring R]
{a : R}
{m : ℕ}
(h : 1 ≤ a)
(h2 : 1 ≤ m)
:
theorem
strictAnti_pow
{R : Type u_2}
[StrictOrderedSemiring R]
{a : R}
(h₀ : 0 < a)
(h₁ : a < 1)
:
StrictAnti fun (n : ℕ) => a ^ n
theorem
pow_lt_self_of_lt_one
{R : Type u_2}
[StrictOrderedSemiring R]
{a : R}
{n : ℕ}
(h₀ : 0 < a)
(h₁ : a < 1)
(hn : 1 < n)
:
theorem
lt_of_pow_lt_pow
{R : Type u_2}
[LinearOrderedSemiring R]
{a : R}
{b : R}
(n : ℕ)
(hb : 0 ≤ b)
(h : a ^ n < b ^ n)
:
a < b
theorem
lt_of_mul_self_lt_mul_self
{R : Type u_2}
[LinearOrderedSemiring R]
{a : R}
{b : R}
(hb : 0 ≤ b)
:
Alias of sq_nonneg
.
Alias of sq_pos_of_ne_zero
.
theorem
abs_lt_of_sq_lt_sq
{R : Type u_2}
[LinearOrderedRing R]
{x : R}
{y : R}
(h : x ^ 2 < y ^ 2)
(hy : 0 ≤ y)
:
|x| < y
theorem
abs_le_of_sq_le_sq
{R : Type u_2}
[LinearOrderedRing R]
{x : R}
{y : R}
(h : x ^ 2 ≤ y ^ 2)
(hy : 0 ≤ y)
:
|x| ≤ y
@[simp]
@[simp]
@[simp]
@[simp]
theorem
pow_four_le_pow_two_of_pow_two_le
{R : Type u_2}
[LinearOrderedRing R]
{x : R}
{y : R}
(h : x ^ 2 ≤ y)
:
Arithmetic mean-geometric mean (AM-GM) inequality for linearly ordered commutative rings.
Alias of two_mul_le_add_sq
.
Arithmetic mean-geometric mean (AM-GM) inequality for linearly ordered commutative rings.
theorem
pow_pos_iff
{M : Type u_1}
[LinearOrderedCommMonoidWithZero M]
[NoZeroDivisors M]
{a : M}
{n : ℕ}
(hn : 0 < n)
:
theorem
pow_lt_pow_succ
{M : Type u_1}
[LinearOrderedCommGroupWithZero M]
{a : M}
{n : ℕ}
(ha : 1 < a)
:
theorem
MonoidHom.map_neg_one
{M : Type u_1}
{R : Type u_2}
[Ring R]
[Monoid M]
[LinearOrder M]
[CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x ≤ x_1]
(f : R →* M)
:
@[simp]
theorem
MonoidHom.map_neg
{M : Type u_1}
{R : Type u_2}
[Ring R]
[Monoid M]
[LinearOrder M]
[CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x ≤ x_1]
(f : R →* M)
(x : R)
:
theorem
MonoidHom.map_sub_swap
{M : Type u_1}
{R : Type u_2}
[Ring R]
[Monoid M]
[LinearOrder M]
[CovariantClass M M (fun (x x_1 : M) => x * x_1) fun (x x_1 : M) => x ≤ x_1]
(f : R →* M)
(x : R)
(y : R)
: