Documentation

Mathlib.Data.Finset.Sort

Construct a sorted list from a finset. #

sort #

def Finset.sort {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] (s : Finset α) :
List α

sort s constructs a sorted list from the unordered set s. (Uses merge sort algorithm.)

Equations
Instances For
    @[simp]
    theorem Finset.sort_sorted {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] (s : Finset α) :
    @[simp]
    theorem Finset.sort_eq {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] (s : Finset α) :
    (Finset.sort r s) = s.val
    @[simp]
    theorem Finset.sort_nodup {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] (s : Finset α) :
    @[simp]
    theorem Finset.sort_toFinset {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] [DecidableEq α] (s : Finset α) :
    @[simp]
    theorem Finset.mem_sort {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] {s : Finset α} {a : α} :
    @[simp]
    theorem Finset.length_sort {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] {s : Finset α} :
    @[simp]
    theorem Finset.sort_empty {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] :
    @[simp]
    theorem Finset.sort_singleton {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] (a : α) :
    Finset.sort r {a} = [a]
    theorem Finset.sort_perm_toList {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] (s : Finset α) :
    theorem Finset.sort_sorted_lt {α : Type u_1} [LinearOrder α] (s : Finset α) :
    List.Sorted (fun (x x_1 : α) => x < x_1) (Finset.sort (fun (x x_1 : α) => x x_1) s)
    theorem Finset.sort_sorted_gt {α : Type u_1} [LinearOrder α] (s : Finset α) :
    List.Sorted (fun (x x_1 : α) => x > x_1) (Finset.sort (fun (x x_1 : α) => x x_1) s)
    theorem Finset.sorted_zero_eq_min'_aux {α : Type u_1} [LinearOrder α] (s : Finset α) (h : 0 < List.length (Finset.sort (fun (x x_1 : α) => x x_1) s)) (H : Finset.Nonempty s) :
    List.nthLe (Finset.sort (fun (x x_1 : α) => x x_1) s) 0 h = Finset.min' s H
    theorem Finset.sorted_zero_eq_min' {α : Type u_1} [LinearOrder α] {s : Finset α} {h : 0 < List.length (Finset.sort (fun (x x_1 : α) => x x_1) s)} :
    List.nthLe (Finset.sort (fun (x x_1 : α) => x x_1) s) 0 h = Finset.min' s (_ : Finset.Nonempty s)
    theorem Finset.min'_eq_sorted_zero {α : Type u_1} [LinearOrder α] {s : Finset α} {h : Finset.Nonempty s} :
    Finset.min' s h = List.nthLe (Finset.sort (fun (x x_1 : α) => x x_1) s) 0 (_ : 0 < List.length (Finset.sort (fun (x x_1 : α) => x x_1) s))
    theorem Finset.sorted_last_eq_max'_aux {α : Type u_1} [LinearOrder α] (s : Finset α) (h : List.length (Finset.sort (fun (x x_1 : α) => x x_1) s) - 1 < List.length (Finset.sort (fun (x x_1 : α) => x x_1) s)) (H : Finset.Nonempty s) :
    List.nthLe (Finset.sort (fun (x x_1 : α) => x x_1) s) (List.length (Finset.sort (fun (x x_1 : α) => x x_1) s) - 1) h = Finset.max' s H
    theorem Finset.sorted_last_eq_max' {α : Type u_1} [LinearOrder α] {s : Finset α} {h : List.length (Finset.sort (fun (x x_1 : α) => x x_1) s) - 1 < List.length (Finset.sort (fun (x x_1 : α) => x x_1) s)} :
    List.nthLe (Finset.sort (fun (x x_1 : α) => x x_1) s) (List.length (Finset.sort (fun (x x_1 : α) => x x_1) s) - 1) h = Finset.max' s (_ : Finset.Nonempty s)
    theorem Finset.max'_eq_sorted_last {α : Type u_1} [LinearOrder α] {s : Finset α} {h : Finset.Nonempty s} :
    Finset.max' s h = List.nthLe (Finset.sort (fun (x x_1 : α) => x x_1) s) (List.length (Finset.sort (fun (x x_1 : α) => x x_1) s) - 1) (_ : List.length (Finset.sort (fun (x x_1 : α) => x x_1) s) - 1 < List.length (Finset.sort (fun (x x_1 : α) => x x_1) s))
    def Finset.orderIsoOfFin {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : Finset.card s = k) :
    Fin k ≃o { x : α // x s }

    Given a finset s of cardinality k in a linear order α, the map orderIsoOfFin s h is the increasing bijection between Fin k and s as an OrderIso. Here, h is a proof that the cardinality of s is k. We use this instead of an iso Fin s.card ≃o s to avoid casting issues in further uses of this function.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def Finset.orderEmbOfFin {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : Finset.card s = k) :
      Fin k ↪o α

      Given a finset s of cardinality k in a linear order α, the map orderEmbOfFin s h is the increasing bijection between Fin k and s as an order embedding into α. Here, h is a proof that the cardinality of s is k. We use this instead of an embedding Fin s.card ↪o α to avoid casting issues in further uses of this function.

      Equations
      Instances For
        @[simp]
        theorem Finset.coe_orderIsoOfFin_apply {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : Finset.card s = k) (i : Fin k) :
        theorem Finset.orderIsoOfFin_symm_apply {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : Finset.card s = k) (x : { x : α // x s }) :
        ((OrderIso.symm (Finset.orderIsoOfFin s h)) x) = List.indexOf (x) (Finset.sort (fun (x x_1 : α) => x x_1) s)
        theorem Finset.orderEmbOfFin_apply {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : Finset.card s = k) (i : Fin k) :
        (Finset.orderEmbOfFin s h) i = List.nthLe (Finset.sort (fun (x x_1 : α) => x x_1) s) i (_ : i < List.length (Finset.sort (fun (x x_1 : α) => x x_1) s))
        @[simp]
        theorem Finset.orderEmbOfFin_mem {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : Finset.card s = k) (i : Fin k) :
        @[simp]
        theorem Finset.range_orderEmbOfFin {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : Finset.card s = k) :
        theorem Finset.orderEmbOfFin_zero {α : Type u_1} [LinearOrder α] {s : Finset α} {k : } (h : Finset.card s = k) (hz : 0 < k) :
        (Finset.orderEmbOfFin s h) { val := 0, isLt := hz } = Finset.min' s (_ : Finset.Nonempty s)

        The bijection orderEmbOfFin s h sends 0 to the minimum of s.

        theorem Finset.orderEmbOfFin_last {α : Type u_1} [LinearOrder α] {s : Finset α} {k : } (h : Finset.card s = k) (hz : 0 < k) :
        (Finset.orderEmbOfFin s h) { val := k - 1, isLt := (_ : k - 1 < k) } = Finset.max' s (_ : Finset.Nonempty s)

        The bijection orderEmbOfFin s h sends k-1 to the maximum of s.

        @[simp]
        theorem Finset.orderEmbOfFin_singleton {α : Type u_1} [LinearOrder α] (a : α) (i : Fin 1) :
        (Finset.orderEmbOfFin {a} (_ : Finset.card {a} = 1)) i = a

        orderEmbOfFin {a} h sends any argument to a.

        theorem Finset.orderEmbOfFin_unique {α : Type u_1} [LinearOrder α] {s : Finset α} {k : } (h : Finset.card s = k) {f : Fin kα} (hfs : ∀ (x : Fin k), f x s) (hmono : StrictMono f) :

        Any increasing map f from Fin k to a finset of cardinality k has to coincide with the increasing bijection orderEmbOfFin s h.

        theorem Finset.orderEmbOfFin_unique' {α : Type u_1} [LinearOrder α] {s : Finset α} {k : } (h : Finset.card s = k) {f : Fin k ↪o α} (hfs : ∀ (x : Fin k), f x s) :

        An order embedding f from Fin k to a finset of cardinality k has to coincide with the increasing bijection orderEmbOfFin s h.

        @[simp]
        theorem Finset.orderEmbOfFin_eq_orderEmbOfFin_iff {α : Type u_1} [LinearOrder α] {k : } {l : } {s : Finset α} {i : Fin k} {j : Fin l} {h : Finset.card s = k} {h' : Finset.card s = l} :
        (Finset.orderEmbOfFin s h) i = (Finset.orderEmbOfFin s h') j i = j

        Two parametrizations orderEmbOfFin of the same set take the same value on i and j if and only if i = j. Since they can be defined on a priori not defeq types Fin k and Fin l (although necessarily k = l), the conclusion is rather written (i : ℕ) = (j : ℕ).

        def Finset.orderEmbOfCardLe {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : k Finset.card s) :
        Fin k ↪o α

        Given a finset s of size at least k in a linear order α, the map orderEmbOfCardLe is an order embedding from Fin k to α whose image is contained in s. Specifically, it maps Fin k to an initial segment of s.

        Equations
        Instances For
          theorem Finset.orderEmbOfCardLe_mem {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : k Finset.card s) (a : Fin k) :
          unsafe instance Finset.instReprFinset {α : Type u_1} [Repr α] :
          Equations
          theorem Fin.sort_univ (n : ) :
          Finset.sort (fun (x y : Fin n) => x y) Finset.univ = List.finRange n