Documentation

Bookshelf.Enderton.Set.Chapter_6

Enderton.Set.Chapter_6 #

Cardinal Numbers and the Axiom of Choice

NOTE: We choose to use injectivity/surjectivity concepts found in Mathlib.Data.Set.Function over those in Mathlib.Init.Function since the former provides noncomputable utilities around obtaining inverse functions (namely Function.invFunOn).

theorem Enderton.Set.Chapter_6.theorem_6b {α : Type u_1} (A : Set α) :
A 𝒫 A

Theorem 6B #

No set is equinumerous to its powerset.

Pigeonhole Principle #

theorem Enderton.Set.Chapter_6.subset_finite_max_nat {S' : Set } {S : Set } (hS : Set.Finite S) (hS' : Set.Nonempty S') (h : S' S) :
∃ m ∈ S', nS', n m

A subset of a finite set of natural numbers has a max member.

theorem Enderton.Set.Chapter_6.pigeonhole_principle_aux (n : ) (M : Set ) :
M Set.Iio n∀ (f : ), Set.MapsTo f M (Set.Iio n) Set.InjOn f M¬Set.SurjOn f M (Set.Iio n)

Auxiliary function to be proven by induction.

No natural number is equinumerous to a proper subset of itself.

theorem Enderton.Set.Chapter_6.corollary_6c {α : Type u_1} [DecidableEq α] [Nonempty α] {S : Set α} {S' : Set α} (hS : Set.Finite S) (h : S' S) :
S S'

Corollary 6C #

No finite set is equinumerous to a proper subset of itself.

theorem Enderton.Set.Chapter_6.corollary_6d_a {α : Type u_1} [DecidableEq α] [Nonempty α] {S : Set α} {S' : Set α} (hS : S' S) (hf : S S') :

Corollary 6D (a) #

Any set equinumerous to a proper subset of itself is infinite.

Corollary 6D (b) #

The set ω is infinite.

theorem Enderton.Set.Chapter_6.corollary_6e {α : Type u_1} [Nonempty α] (S : Set α) (hS : Set.Finite S) :
∃! (n : ), S Set.Iio n

Corollary 6E #

Any finite set is equinumerous to a unique natural number.

theorem Enderton.Set.Chapter_6.lemma_6f {n : } {C : Set } :
C Set.Iio n∃ m < n, C Set.Iio m

Lemma 6F #

If C is a proper subset of a natural number n, then C ≈ m for some m less than n.

theorem Enderton.Set.Chapter_6.corollary_6g {α : Type u_1} {S : Set α} {S' : Set α} (hS : Set.Finite S) (hS' : S' S) :

Corollary 6G #

Any subset of a finite set is finite.

theorem Enderton.Set.Chapter_6.subset_size {α : Type u_1} [DecidableEq α] [Nonempty α] {A : Set α} {B : Set α} (hBA : B A) (hA : Set.Finite A) :
∃ (m : ) (n : ), B Set.Iio m A Set.Iio n m n

Subset Size #

Let A be a finite set and B ⊂ A. Then there exist natural numbers m, n ∈ ω such that B ≈ m, A ≈ n, and m ≤ n.

theorem Enderton.Set.Chapter_6.finite_dom_ran_size {α : Type u_1} {f : αα} [Nonempty α] {A : Set α} {B : Set α} (hA : Set.Finite A) (hB : Set.Finite B) (hf : Set.MapsTo f A B) :
∃ (m : ) (n : ), A Set.Iio m f '' A Set.Iio n m n

Finite Domain and Range Size #

Let A and B be finite sets and f : A → B be a function. Then there exist natural numbers m, n ∈ ω such that dom f ≈ m, ran f ≈ n, and m ≥ n.

theorem Enderton.Set.Chapter_6.sdiff_size_aux {α : Type u_1} {m : } [DecidableEq α] [Nonempty α] (A : Set α) :
A Set.Iio mBA, ∃ n ≤ m, B Set.Iio n A \ B Set.Iio m \ Set.Iio n

Set Difference Size #

Let A ≈ m for some natural number m and B ⊆ A. Then there exists some n ∈ ω such that B ≈ n and A - B ≈ m - n.

theorem Enderton.Set.Chapter_6.sdiff_size {α : Type u_1} {m : } [DecidableEq α] [Nonempty α] {A : Set α} {B : Set α} (hB : B A) (hA : A Set.Iio m) :
∃ n ≤ m, B Set.Iio n A \ B Set.Iio m \ Set.Iio n
theorem Enderton.Set.Chapter_6.exercise_6_7 {α : Type u_1} [DecidableEq α] [Nonempty α] {A : Set α} {f : αα} (hA₁ : Set.Finite A) (hA₂ : Set.MapsTo f A A) :
Set.InjOn f A f '' A = A

Exercise 6.7 #

Assume that A is finite and f : A → A. Show that f is one-to-one iff ran f = A.

theorem Enderton.Set.Chapter_6.exercise_6_8 {α : Type u_1} {A : Set α} {B : Set α} (hA : Set.Finite A) (hB : Set.Finite B) :

Exercise 6.8 #

Prove that the union of two finites sets is finite, without any use of arithmetic.

theorem Enderton.Set.Chapter_6.exercise_6_9 {α : Type u_1} {β : Type u_2} {A : Set α} {B : Set β} (hA : Set.Finite A) (hB : Set.Finite B) :

Exercise 6.9 #

Prove that the Cartesian product of two finites sets is finite, without any use of arithmetic.